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Abstract: Failure mode, effects and criticality analysis 
(FMECA) and Fault tree analysis (FTA) are powerful tools 
to evaluate reliability of systems. Although single failure 
mode issue can be efficiently addressed by traditional 
FMECA, multiple failure modes and component correla
tions in complex systems cannot be effectively evaluated. 
In addition, correlated variables and parameters are often 
assumed to be precisely known in quantitative analysis. In 
fact, due to the lack of information, epistemic uncertainty 
commonly exists in engineering design. To solve these 
problems, the advantages of FMECA, FTA, fuzzy theory, 
and Copula theory are integrated into a unified hybrid 
method called fuzzy probability weighted geometric mean 
(FPWGM) risk priority number (RPN) method. The epis
temic uncertainty of risk variables and parameters are 
characterized by fuzzy number to obtain fuzzy weighted 
geometric mean (FWGM) RPN for single failure mode. 
Multiple failure modes are connected using minimum 
cut  sets (MCS), and Boolean logic is used to combine 
fuzzy risk priority number (FRPN) of each MCS. Moreover, 
Copula theory is applied to analyze the correlation of 
 multiple failure modes in order to derive the failure pro
babilities of each MCS. Compared to the case where de
pendency among multiple failure modes is not consid
ered, the Copula modeling approach eliminates the error 
of reliability analysis. Furthermore, for purpose of quan
titative analysis, probabilities importance weight from 
failure probabilities are assigned to FWGM RPN to reas
sess the risk priority, which generalize the definition of 
probability weight and FRPN, resulting in a more accurate 
estimation than that of the traditional models. Finally, a 
basic fatigue analysis case drawn from turbine and com
pressor blades in aeroengine is used to demonstrate the 
effectiveness and robustness of the presented method. 
The result provides some important insights on fatigue 
 reliability analysis and risk priority assessment of struc
tural system under failure correlations.
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1  Introduction
Due to high reliability and safety for most complex sys
tems,  failure mode and effects analysis (FMEA)/failure 
mode, effects and criticality analysis (FMECA) have seen 
wide applications in various domains such as aerospace, 
nuclear, power generation, petrochemical, and other in
dustries. FMECA has been proven to be one of the most 
important preventative initiatives and proactive measures 
during the design stage of a system as well as in process 
and service stages [1]. As the crucial part of aeroengine, 
blade failures count for 70% of total failures of aero 
engine components. For turbine engine components, one 
of the most failure modes is the fatigue fracture, which 
is  characteristics of high failure rate, multiple failure 
modes and great harmfulness. Therefore, fatigue analy
sis  is conducted for these high reliability products in 
FMECA, combining with the structural design of turbine 
engine components and their condition based mainte
nances, to prevent the occurrence of malfunctions that 
may lead to significant losses or even catastrophic failures 
[2–3].

Traditional FMECA only pays close attention to the 
effect of single failure modes by considering epistemic 
 uncertainty. For instance, Gargama et al. [4] develop a 
fuzzy risk priority number (FRPN) method for single 
failure mode analysis, but the effects of the components 
on the system with multiples failure modes have not 
been  taken into account. According to the problem, 
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Pickard et al. [5] have taken the consideration of multiple 
failures within a system. However, multiple failure prob
lems of a large and complex system have not yet been 
 successfully handled. Xiao et al. [6] apply fault tree analy
sis (FTA) and the minimal cut sets (MCS) to connect 
complex systems with multiple failure modes. Based on 
the assumption that individual failure modes are inde
pendent with each other, they quantitatively assess the 
risk priority with the help of probability weighted crisp 
risk priority number (RPN). Yang et al. [7] proposed a 
fuzzy  rulebased Bayesian reasoning approach for pri
oritization of failures in FMEA. However, all of these ap
proaches failed to incorporate epistemic uncertainty and 
multiple correlated failure modes into the RPN metric. 
Owing to these correlations [8], ambiguous cognition and 
lack of failure data, ignoring the dependency among the 
failure modes may affect the accuracy of quantitative 
analysis for the actual situation. Fortunately, Copula func
tion is found to be a practical and convenient tool to solve 
the correlation issue [9]. Therefore, in this paper, Copula 
 function is applied to analyze the fatigue reliability for 
turbine and compressor blades. In particular, FRPN of 
multiple correlated failure modes is analyzed by using 
MCS of fault tree analysis, and the lifetime distribution 
is established based on Weibull function subject to multi
ple correlated failure modes. Combining the advantages 
of  Copula theory, MCS method, and fuzzy variables in 
dealing with uncertain problems, a new fuzzy probability 
weighted geometric average (FPWGM) RPN method is 
 developed.

The rest of the paper is organized as follows: In 
Section 2, FRPN for single failure mode and new FRPN are 
evaluated. In Section 3, a new FPWGM RPN algorithm 
based on Copula theory and MCS is proposed. Section 4 
applies the aforementioned method to analyze fatigue 
failure of turbine and compressor blades.

2  FRPN evaluation and multiple 
failure modes combination

In this section, MCS is applied to analyze FRPN for multi
ple failure modes. To connect multiple failure modes, 
new  FRPN is obtained by combining FWGM algorithm, 
the  benchmark adjustment search algorithm (BASA), 
MCS  method, and the Boolean operation. Since the tra
ditional RPN approach is limited to the case of single 
failure  mode and crisp RPN fails to consider epistemic 
 uncertainty under multiple failure modes conditions, a 
new method for FRPN evaluation is put forward as follow.

2.1  Fuzzy weighted geometric mean RPN 
evaluation

RPN is a necessary part of FMECA, which is defined as the 
product of three factors, i.e., the occurrence (O), severity 
(S) and detection (D): RPN = O × S × D. These three factors 
are evaluated using the ratings (also called rankings or 
scores) from 1 to 10, as described in [1, 10–11]. However, 
these three factors of traditional RPN are difficult to be 
 determined precisely because of various uncertainties. 
Much information in FMECA can be expressed in a linguis
tic way such as moderate, remote or very high. In addition, 
the relative importance among O, S and D are not taken 
into account. Rather these three factors are assumed to 
have the same importance. This may not be the case when 
applying to a practical FMECA. As a result, the RPN has 
been extensively criticized for various reasons [12–13]. To 
overcome these drawbacks, the comprehensive fuzzy as
sessment information can be obtained for various failure 
modes by combining fuzzy relative importance weights of 
three factors with the fuzzy numbers of the criteria [4] 
 assessed by team members. The concept of FRPN is de
fined as FWGM RPN. The αlevel sets of FRPN can be calcu
lated using the combination of FWGM and BASA. Wang 
et  al. [14] adopt the method of aggregating the FMECA 
team members’ subjective opinions. Since the aggregate 
method involves tedious procedures, a comprehensive in
terval number matrix is introduced to simplify and improve 
aggregate method in this paper.

Suppose there are n types of failure modes, i.e., iFM  
( 1, , )i n=  , to be evaluated and prioritized by a FMECA 
team member jTM  ( 1, , )j m=  . Let 1 2( , , ,O O O O

ij ijL ijM ijMR R R R=

)O
ijUR , ( , , )S S S S

ij ijL ijM ijUR R R R=  and ( , , )D D D D
ij ijL ijM ijUR R R R=  be the 

fuzzy ratings of the ith failure modes on O, S and D 
 respectively. ( , , )O O O O

j jL jM jUw w w w= , ( , , )S S S S
j jL jM jUw w w w=  and 

( , , )D D D D
j jL jM jUw w w w=  be the fuzzy weights of the three risk 

factors provided by the jth FMECA team member (TMj), re
spectively. These fuzzy grades or fuzzy weights are defined 
as triangular or trapezoid fuzzy numbers. In addition, jh  
( 1, , )j m=   are the relative importance weight of the team

members, satisfying 
1

1
m

j
j

h
=

=∑  and 0jh >  ( 1, , )j m=  , and H

is defined as a matrix of jh  ( 1, , )j m=  , let 1[ , , ]jH h h=  . 
L, M and U denote the lower, medium, and upper bound, 
respectively. For a triangular membership functions, M1 
and M2 denote left and right middle bounds. Based on 
these assumptions, n failure mode is optimized to evalu
ate overall risk priority by the following steps. First, the 
interval number matrix algorithm is used to obtain com
prehensive fuzzy assessment information of each failure 
mode and the relative importance weights of three risk 
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factors from the expert judgments, as is expressed in Eqs. 
(1)–(6).
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Then, the FRPN of each failure mode can be defined 
as

/( ) /( )
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Suppose FRPNi has been derived by considering rela
tive importance weight and factor fuzzy weight. We utilize 
the αlevel sets to compute the lower and upper bound of 
failure modes ratings and weights as follows

1
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 are all adopting the same calculation method as 

Eq. (8). FWGM can be expressed as Eq. (9)
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where Gy  is a fuzzy number which can be calculated 
using αlevel sets and the extension principle [14–15]. Let 

( ) ,( )L U
G G Gy y y

α α
 =    be a αlevel set of Gy . The following 

mathematical models by ln xx e=  transformation can be 
derived as:
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where ( ) ( ) ,L U
i i iw w w

α α
≤ ≤  1, , ,i n=   and exp ( ) denotes the 

exponential function.
To generate a different αlevel sets of FRPNi by setting 

different α level, we adopt BASA to derive the minimum 
and maximum of Gy , i.e., ( )L

Gy
α
 and ( )U

Gy
α

. Accordingly, 
FWGM RPN is calculated by FWGM and BASA algo
rithms, and the detailed process is presented in literature 
[4, 14].

2.2  Centroid defuzzification algorithm

The FRPNs are derived from the aforementioned ap
proaches based on αlevel sets. It is essential to transform 
fuzzy numbers into crisp numbers for the purpose of 
 comparison and ranking. Such process is called defuzzifi
cation [15–17]. In this paper, centroid defuzzification is 
adapted to prioritize failure information by the extracted 
FWGM. 0( )x A  is the defuzzified value. When the explicit 
membership function of a fuzzy number A  is not known, 
yet αlevel cut sets are available, its defuzzified centroid

can be determined by Eq. (11), especially, when 1
n

α∆ =  

and 1 ,i n
α =  0, ,i n=  , the equation can be simplified as:
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If one only takes into account the fuzzy risk priority 
with single failure mode, the defuzzified centroid values 
of FWGM RPN for each failure mode can be obtained. The 
bigger the defuzzified centroid value, the higher would 
be  the overall criticality (i.e. risk) and risk priority [18]. 
However, this is often the case that there are multiple 
 correlated failure modes in practice. Therefore, how to 
combine multiple failure modes of complex component 
will be elaborated in the following.

2.3  Multiple failure modes combination

FTA was originally developed in 1962. Since then, the 
theory and the application of FTA have been developed 
rapidly and are often used as a failure analysis tool in reli
ability engineering [19]. In practice, FTA is often combined 
with FMEA/FMECA to effectively connect multiple failure 
modes for quantitative reliability analysis.

When fault tree is apply to analyze the reliability of a 
complex system consisting of n multiple correlated failure 
modes, if repeated bottom events and multiple failure 
modes are assumed to be independent of each mode, the 
probability of top event should be calculated by MCS 
method instead of by direct probability method. This is 
because the fault tree of any monotone coherent system 
can be translated into a bunch of MCS only including 
AND  gate, OR gate and bottom events, and a top event 
can  be regard as a OR gate, and MCS can be viewed as 
a  AND gate. Whether these inputs are independent or 
 dependent failure modes, after a bunch of MCS were 
derived, top event can be transformed into multiple fail
ure modes only containing MCS. Therefore, the fault tree 
of a complex system becomes a parallelseries structure 
system [20].

Each MCS is combined by AND operation. This means 
that multisingle failure modes can be connected by AND 
operation using Boolean logic. The calculation rules of 
AND gate and OR gate connection is redefined as

1
AND: FRPN FRPN

m

i
i=

=∏ (12)

1
OR: FRPN FRPN

m

i
i=

= ∑ (13)

Hence, FRPN considering MCS with multiple failure 
modes in complicated system can be derived using defined 
AND operation of FRPN.

In this section, the basic flow and steps to derive the 
FRPN of multiple failure modes is:
1. Establish FMECA table and FTA diagram for complex 

system. MCS is obtained by analyzing the inherent 
logical relationship of FTA, as shown in Table 1 and 
Fig. 1 of Section 4.1.

2. Evaluate the fuzzy ratings of each single failure mode 
on three risk factors and fuzzy factor weights ratings 
to derive fuzzy assessment information on single 
failure mode by FMECA team members, which is de
scribed in Section 2.1 and shown in Table 2.

3. Adopt interval number matrix algorithm to derive 
fuzzy comprehensive assessment information of 
single failure mode and relative importance weights 
of three risk factors, as expressed by Eqs. (1)–(6) in 
Section 2.1 and shown in Table 3.

4. The FWGM algorithm is utilized to define FRPN of 
single failure mode, and BASA is used to derive the 
minimum and maximum value of FWGM RPN by 
setting different αlevel of FWGM RPN, as expressed 
in Eqs. (7)–(10) and shown in Table 4.

5. Using AND operation of Boolean logic to derive FRPN 
of MCS with multiple failure modes, as shown in 
Section 2.3 and Table 5.

In the following section, failure probability with cor
related failure modes will be considered during the deriva
tion of new RPN rankings.

3  FPWGM RPN based on Copula 
and MCS

Although multiple failure modes are effectively connected 
using MCS and Boolean operation, traditional probability 
weighted RPN assessment in FMECA is mostly used to 
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solve the problem that multiple failure modes are mutu-
ally independent, and it is impossible to solve the proba-
bility weighted RPN analysis issue with correlated failure 
mode. At the same time, uncertainty can not be taken into 
account in the RPN analysis. Fortunately, Copula function 
is a powerful tool to explore the correlation structure 
among random variables, which has been applied to cor-
relate failure modeling such as the common failure of re-
dundant structure system and reliability analysis [21] and 
the reported results are quite encouraging. Although 
Copula theory has been applied in above field, its applica-
tion to fatigue FMECA and MCS of FTA has never been 
seen, in addition, its application for rotor of aero-engine 
to analyze fatigue fracture failure has not been reported 
either.

3.1  Definition and properties of n-Copula 
functions

Copula theory was originally proposed by Sklar in 1959 
[22]. Nelson [23] gave a rigorous definition for Copula 
function, i.e., it is a linking function that connect the joint 
distribution function 1 2( , , , )nF x x x  of multidimensional 
random variables 1 2, , , nX X X  and respective marginal 
distribution function 

1 21 2( ), ( ), , ( )
nX X X nF x F x F x , namely, 

have a function 1 2( , , , )nC u u u , let

1 21 2 1 2( , , , ) [ ( ), ( ), , ( )]
nn X X X nF x x x C F x F x F x=  (14)

Suppose 
1 21 2( ), ( ), , ( )

nX X X nF x F x F x  is respectively 
one-dimensional continuous distribution function, and 
obey uniform distribution on [0, 1]. If there exists a n- 
Copula function, namely satisfying following proper-
ties’ function 

1 21 2 1 2( ( ), ( ), , ( )) ( , , , )
nX X X n nC F x F x F x C u u u=    

(
11 1( )Xu F x= , ( )

nn X nu F x= ), and satisfy

 (1)  Definition domain is nI , namely [0,1]n;
 (2)  For each u in definition domain nI , 1 2( , , , )nC u u u  

exists zero base surface (i.e. there is ( ) [0,1],iF x ∈  
1,2, , ,i n=   make 

1 21 2[ ( ), ( ), , ( )] 0
nX X X nC F x F x F x = ), 

and is n-dimensional increments.
 (3)  1 2( , , , )nC u u u  has marginal distribution function 

( )i iC u  ( 1,2, , )i n=  , and satisfying

( ) (1, ,1, ,1, ,1)i i i iC u C u u= =  (15)

where [0,1]iu ∈  ( 1,2, , )i n=  , then 
1 1( ( ),XC F x  

2 2 1 2( ), , ( )) ( , , , )
nX X n nF x F x C u u u= 

 
is called as a 

n-Copula function of 
1 21 2( ), ( ), , ( ),

nX X X nF x F x F x  
namely 1 2, , , nu u u  [24].

According to Sklar Theorem: there is a Copula function 

1 21 2[ ( ), ( ), , ( )]
nX X X nC F x F x F x , satisfying 1 2( , , , )nF x x x =

 
1 21 2[ ( ), ( ), , ( )]

nX X X nC F x F x F x . If 
1 21 2[ ( ), ( ), , ( )]

nX X X nF x F x F x  
is continuous, then 

1 21 2[ ( ), ( ), , ( )]
nX X X nC F x F x F x , i.e., 

1 2( , , , )nF x x x  is uniquely determined.

3.2  System reliability modeling based on 
Copula function

According to the previous definition, determining ( ),i iR t  
1,2, ,i n=   of each subsystem, here ( )i iR t  is continuous, 

then a Copula function 1 1 2 2( ( ), ( ), , ( ))n nC R t R t R t  can be 
uniquely identified. Let 1 2 1 1 2 2( , , , ) ( ( ), ( ), ,nR t t t C R t R t=   

( ))n nR t , where, 1 2( , , , )kR t t t  is the joint distribution func-
tion of ( ),i iR t  1,2, ,i k=  , namely reliability function of k 
dependent subsystems. Considering the fact that some 
failure modes are mutually independent, while others are 
not, the reliability can be expressed as

1 1
( ) ( ) ( )

m n

i j
i j

R t C t R t
= =

=∏ ∏ (16)

In Eq. (16), ( )iC t  is the comprehensive reliability for ith 
group fault related subsystem, ( )jR t  is the reliability for 
jth  independent subsystem, and this formula establish 
the  relationship between the system reliability and the 
subsystem reliability.

According the definition of Copula function and 
Sklar theorem, the commonly used Copula functions are 
Gaussian Copula, t-Copula and Archimedes Copula func-
tion, in which, Gumbel, Clayton and Frank Copula are 
three types of popularly used Archimedes Copula func-
tion. Gumbel and Clayton Copula function are respectively 
adapted for positive correlation and negative correlation, 
while Frank Copula can be used to the two kinds of cases. 
Since the most mechanical systems are serially connected 
as shown in OR gate for MCS of FTA, the service life rela-
tionships between every component are positively cor-
related, i.e. during the service time of mechanical systems, 
the strength degradation of one component often occurs 
with the strength degradation of another component. For 
example, vibration agitated by tail gas and trembling 
 vibration often cause the bending vibration of turbine 
blades. Hence the trend of failure that is greater than 
the two mutual independent failures. Gumbel function is 
more suitable for these mechanical systems, and it can be 
expressed as

1/
1 2

1
( , , , ; ) exp( [ ( ln ) ] ), (0,1]

n

n i
i

C u u u u θ θ
θ θ

=

= − − ∈∑ (17)
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In this formula, θ  is a random variable, when θ  is 
closer to 0, the stronger correlation is, until completely 
linear correlation. When θ  is closer to 1, the weaker cor
relation is, until 1θ = , namely failure probabilities for n 
subcomponents are mutually independent.

As fault tree is composed of a series of MCS and each 
MCS consist of a parallel of bottom events, it is necessary 
to discuss Copula proposition when multiple correlated 
failure modes are series or parallel. He et al. [25] suppose 
a system consist of n dependent component or subsystem 
or MCS. Let the life of ith unit is Ti, then Fi(t) is the distri
bution function of Ti, and reliability is ( ) ( )i iR t P T t= > = 
1 ( )iF t− , 1,2, ,i n=  , in which, the life of series system  
is 1 2min( , , , )nT T T T=  , the joint distribution function of 

1 2, , , nT T T  is 1 2 1 1 2 2( , , , ) { , , , }n n nF t t t P T t T t T t= ≤ ≤ ≤  .
According to Sklar theorem, if there exists an n 

dimensional Copula function C, making 1 2( , , , )nF t t t =  
1 1 2 2( ( ), ( ), , ( ))n

n nC F t F t F t . As ( )iF t  is continuous, 1 1( ( ),nC F t  
2 2( ), , ( ))n nF t F t  is a unique function. Consequently, reli

ability model of a series system based on Copula function 
can be expressed as

 

1 2

1 2

1 2

1

1 2
1

1

1 2
1 others

( ) (min( , , , ) ) ( )

1 ( ) ( 1)

( ( ), ( ), , ( ))

1 ( ) ( 1)

( ( ), ( ), , ( ),1,1, ,1)

k

k

n i
n

k
i

i

i i ik
i i i n

n
k

i
i

n
i i ik

i i i n n k

R t P T T T t P T t

F t

C F t F t F t

F t

C F t F t F t

=

≤ < < ≤

=

≤ < < ≤ −

= > = >

= − + −

×

= − + −

×

∑
∑

∑
∑









 



(18)

In the formula, 2 k n≤ ≤ . At the same principle, the 
 reliability model of parallel system based on Copula func
tion is

1 2

1 2

1 2

1 2
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When each unit is independent of one another,

1
( ) 1 (1 ( ))

n

i
i

R t R t
=

= − −∏ , this is identical with reliability

model of parallel system assumed as independent.
By constructing a suitable Copula function, we can 

establish reliability model of system based on Copula 
function. The reliability of system when failure modes of 
MCS are correlated can be accurately computed.

3.3  FPWGM RPN algorithm based on Copula 
and MCS

As is known to all, probability importance of failure is 
widely applied in FTA, more details are available in [6, 26], 
and the importance of some events is greater than the 
others, which is mainly because they contribute more to 
the occurrence probability of the top events. Thus, to de
termine reliability index for importance of failure modes, 
in this paper, FWGM RPN is multiplied by probability 
weight f(Wi) to derive a new defined Fuzzy Probability 
Weighted Geometric Mean RPN (FPWGMRPN) by consid
ering the importance of failure probability and assessing 
their impact on system reliability.

/( ) /( )

/( )
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[( ) ( )

( ) ] ( )

O O S D S O S D
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i i i
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i i

D w w w w
i i

f W
R R

R f W

+ + + +

+ +

= ×
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× ×

       

   

 

 (20)

where Wi is the importance of ith MCS in system, while 
f(Wi) is the function of variable Wi.

In addition, by utilizing Linear Interval Mapping 
(LIM), 0 is mapped to 0 and 0.01 is mapped to 1. Assume 

[0,0.01],x∈  [0,1]y∈ , the mapping between interval [0,1] 
and interval [0,0.01] is y  =  100 * x. Here x can be obtained 
using Copula function to derive failure probability Wi of 
MCS with multiple correlated failure modes, and y is 
failure probability weight f(Wi) obtained by LIM in Eq. 
(20).

f(Wi) is applied to evaluate FWGM RPN for the derived 
FPWGM RPN based on Copula and MCS by considering 
the correlation of multiple failure modes.

4 Case study
An example in fatigue failure of FMECA and FTA for 
 aeroengine turbine and compressor blades is illustrated. 
In this study, the proposed FPWGM RPN algorithm based 
on Copula and MCS is utilized to perform FRPN quantita
tive evaluation with multiple failure modes.

4.1  FMECA and FTA

The failure modes for turbine and compressor blades 
mainly consist of the fatigue failure caused by bending 
stress results from centrifugal forces; the trembling vibra
tion and torsional resonance as well as bending vibra
tion caused by vibration environment; high temperature 
fatigue, fretting fatigue and corrosion damage caused by 
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environmental media and the contact state. Because of 
the complexity of service environment for turbine and 
compressor blades, the actual fatigue for blades is not 
one  of theses modes, but rather a superposition of sev
eral types of failure modes, namely multireasons result in 
“composite” fatigue failure, such as fatigue failure caused 
by low cycle fatigue, trembling vibration and/or torsional 
resonance; fatigue failure caused by corrosion fatigue and 
high cycle fatigue for blade roots [3]. At present, reliability 
assessment in FMECA for an aeroengine is basically 
carried out for nonrepairable components. Hence, in RPN 
study, the weight of detection is smaller than repairable 
components. The categories of severity are determined 
 according to the effect of fault on some agreed levels and 
are divided into four categories: catastrophic I, fatal II, 
criticality III, mild IV [10]. According to the specific char
acteristics of turbine and compressor blades, severity is 
assigned with larger weights, FMECA and assumed failure 
mode life distribution [28] of the fatigue failures of turbine 
and compressor blades are shown in Table 1. Moreover, 
FMECA would be used to information assessment on eight 
failure modes in Table 2 in Section 4.2, and life distribu
tion would be utilized to Section 4.3 for failure probabili
ties calculation with correlated failure modes.

The reliability of an aeroengine is based on the 
 reliability of unit or components. In other words, only 
when the reliability of turbine engine unit reaches its 
design target, then the turbine engine can be operated 
under high reliability conditions. Hence, the correlation of 
failure mode for each component plays a crucial role on 
engine reliability. Considering the correlation between 
 individual failure modes, the basic fatigue failure modes 
for compressor blade and turbine rotor blade can be re
garded as a fault tree, as shown in Fig. 1. MCS is obtained 
by Semanderes algorithm, in which, the top event occurs 
when any one of MCS which leads to fatigue happened 
and it needs to be repaired. Meanwhile, the correlated 
failure mode of each MCS occurs, will cause MCS occur. 
So, the fatigue failure of whole compressor blade or 
turbine blade can be regarded as a seriesparallel system 
consisting of MCS.

The top event of failure modes for turbine and com
pressor blades fatigue is 1 7 1 2 4 3 4 8 5 7T x x x x x x x x x x= + + + + 

6x . There are five MCS, they are { } { } { }1 7 1 2 4 3 4 8, , ,x x x x x x x x
 { } { }5 7 6,x x x , respectively.

4.2  The method to calculate FWGM RPN

Based on those eight failure modes listed in Table 1, 
a  FMECA team consists of five cross functional team 

members identifies and prioritizes these modes in terms 
of their three risk priorities so that a initiative corrected 
action can be taken against the high priority issues. On 
account of the difficulty in precisely assessing the risk 
factors and their relative importance weights, the FMECA 
team members decide to evaluate them using fuzzy 
 language. The five team members from different depart
ments are assumed to be of different importance due 
to  their different field episteme and expertise. To repre
sent their differences in performing FMECA, these five 
members are assigned with the following relative 
weights: h1 = 10%, h2 = 25%, h3 = 30%, h4 = 15%, h5 = 20%. 
Based on the ranking of the five team members, we de 
rive interval number matrix fuzzy assessment informa
tion  of eight failure modes and relative importance 
weights  of three risk factors are shown in Table 3 using 
Eqs. (1)–(6).

The FWGM and BASA are applied to calculate the 
FRPNs of the eight failure modes, where the αlevels are 
set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, re
spectively. The results are presented in Table 4.

To rank each failure mode, computing the deffuzi
fied centroid of every failure mode, as shown in the last 
row but one of Table 4 using Eq. (11). From Fig. 2, it 
should be noted that FM1 with the least overall risk and 
FM3 with the maximum overall risk should be given 
the  top risk priority. The overall priority order is FM1 < 
FM6 < FM5 < FM7 < FM8 < FM2 < FM4 < FM3. Failure modes 
with dotted line represent the highest and lowest risk, 
 respectively.

4.3  Failure probabilities weighted models 
based on Copula function

Generally, according to the strength degradation for me
chanical systems, the failure probability of components 
for random failures should be a monotone increasing 
function of service time t instead of the exponential distri
bution function. Therefore, the exponentialbased model
ing method can not be described for the aforementioned 
degradation case. However, Weibull distribution can de
scribe the monotone increasing or decreasing trend of 
failure rate and its flexibility is higher than many other 
distributions [27]. We take the reliability analysis of life 
distribution as an example, assuming that the life distri
butions of compressor blade or turbine rotor blade are 
known, for the fracture failure mode of low cycle fatigue 
for blade, as shown in the last column in Table 1, failure 
probability of two parameter Weibull distribution can be 
estimated [28] by Eq. (21).
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Table 1: FMECA of fatigue for turbine and compressor blades

Component Failure modes Failure cause Failure effects 
on local

Failure effects 
on system

Severity 
rank

Failure modes 
life distribution

Aero-engine 
turbine and 
compressor 
blades

Low cycle fatigue 
fracture

The dangerous section 
appears plastic zone 
if local or total stress 
of dangerous section 
for blade approach or 
exceed the yield strength 
of materials; or there is 
a wide range of serious 
regional defect around 
dangerous section

Engine damage, 
engine stall 
in the air

Aircraft can not 
be normally 
operated

IV −− 3.13( /3333)1 te

Trembling 
vibration 
fatigue for 
compressor 
blade

Poor coupled 
aerodynamically design 
for compressor blade 
lead to blade take 
alternate loads caused 
by extra trembling 
vibration besides take 
centrifugal loads and 
aerodynamic loads

Engine damage Aircraft can not 
be normally 
operated

II −− 3.976( /2570)1 te

Bending 
vibration 
fatigue

High cycle fatigue failure is 
more common, in which, 
the most common fatigue 
failure caused by the first 
order bending vibration. 

Overall engine 
damage

Damage aircraft 
structure, very 
easily cause 
catastrophic 
aircraft accidents

I −− 4.386( /2340)1 te

Reversal 
resonance 
fatigue

Failure is usually high cycle 
fatigue, appear reversal 
resonance or pitting 
corrosion for blade 
surface, or suffer from 
external object blow so  
as to damage.

Engine damage 
is caused by 
loss corner 
fracture failure 
of reversal 
resonance 
pitch line

Endanger the 
safety of flight 

III −− 3.566( /3000)1 te

High temperature 
fatigue and 
thermal 
fatigue

Creep damage and fatigue 
damage are induced by 
alternating temperature 
and alternating stress 
under high temperatures. 

Engine damage Aircraft can not 
be normally 
operated

III −− 3.426( /3132)1 te

Fretting fatigue Fatigue failures are caused 
by fretting wear for the 
shroud of shrouded 
blade and fretting 
damage of the joint 
surface of rotor blade 
and turbine disk 
serration. 

Engine damage Aircraft can not 
be normally 
operated

IV −− 3.4( /4165)1 te

Corrosion fatigue Pitting corrosion, 
intercrystalline 
corrosion, stress 
corrosion and high 
temperature corrosion 
easily cause fatigue. 

Engine damage Aircraft can not 
be normally 
operated

IV −− 3.32( /3563)1 te

Blade serration 
fatigue

Fretting fatigue and big 
local stress cause fatigue

Engine damage Greatly threaten 
flight safety, 
easily cause a 
major accident

II −− 4.03( /2390)1 te
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3.13( ) 1 exp[ ( ) ] 1 exp[ ( ) ]
3333

mt tF t
η

= − − = − − (21)

where η is the scale parameter, M is the shape para
meter, and the same principle can be applied to the rest 
failure probability distribution of fatigue failure modes, 
as  is shown in Table 1. The Gumbel Copula function

1/
1 2

1
( , , , ; ) exp( [ ( ln ) ] ),

n

n i
i

C u u u u θ θ
θ

=

= − −∑  (0,1]θ ∈  is more

suitable for mechanical system in the Archimedes func
tion group than the linking function.

For MCS, because the failure mode x1 and x7 is con
nected by AND gate, when the failure probability of two 

correlated failure modes is calculated using Gumbel 
 algorithm of parallel Copula function, we assume that 

0.4θ = , when x1 and x7 is correlated, by the formula 
1 2( ) 1 (1 ( ),1 ( ), ,1 ( ))n

nR t C R t R t R t= − − − − , the reliability 
can be calculated by

3.13 3.32( /3333) 2.5 ( /3563) 2.5 0.4( [( ln(1 ))
1

( ln(1 )) ]
,7

)R ( ) 1 t te eet − −− − − + − −= − (22)

When the life is about 1000 hours, to calculate the 
 reliability of blade fracture, t = 1000 is substituted into 
Eq. (22) to derive reliability 1,7R ( ) 0.9132t = . Meanwhile, the 
reliability of x1 and x7 are assumed as independent and  
is ( ) 0.9750R t = . Therefore, it can be observed from calcu
lated results that assuming independent reliability is 
bigger than that with considering correlation of n different 
blade fatigue fault, in other words, the failure probability 
with considering correlation is bigger than independent. 
Therefore, the previous failure probability has a certain 
error if the correlation of each failure mode is not taken 
into account. Similarly, when x1, x2 and x4 are correlated, 
the reliability is

3.13 3.976 3.566( /3333 ) 2.5 ( /2570 ) 2.5 ( /3000 ) 2.5 0.4( [( ln(1 )) ( ln(1 )) ( ln(1

1,

)) ]

2 4

)

,R ( )

1 t t te e e

t

e − − −− − − + − − + − −= − (23)

If substitute t = 1000 into Eq. (23), then 1,2,4R ( ) 0.9974t =

1,2,4R ( ) 0.9974t = . And failure correlated reliability of x3, x4 and x8  
is

4.386 3.566 4.03( /2340 ) 2.5 ( /3000 ) 2.5 ( /2390 ) 2.5 0.4( [( ln(1 )) ( ln(1 )) (

3,4,

ln(1 )) ] )

8R ( )

1 t t te e ee

t
− − −− − − + − − + − −= − (24)

Table 2: Assessment information on eight failure modes by five FMECA team members

Risk factors Factor weights The ith failure modes fuzzy number

1 2 3 4 5 6 7 8

Occurrence TM1:(0.25,0.5,0.75) (1,2,3,4) (6,7,8,9) (6,7,8,9) (6,7,8,9) (3,4,6,7) (8,9,10,10) (6,7,8,9) (3,4,6,7)
TM2:(0.5,0.75,1) (3,4,6,7) (3,4,6,7) (8,9,10,10) (8,9,10,10) (1,2,3,4) (6,7,8,9) (8,9,10,10) (1,2,3,4)
TM3:(0.5,0.75,1) (1,2,3,4) (6,7,8,9) (8,9,10,10) (6,7,8,9) (3,4,6,7) (8,9,10,10) (6,7,8,9) (1,2,3,4)
TM4:(0.25,0.5,0.75) (1,2,3,4) (6,7,8,9) (8,9,10,10) (6,7,8,9) (1,2,3,4) (6,7,8,9) (6,7,8,9) (3,4,6,7)
TM5:(0.75,1,1) (1,2,3,4) (3,4,6,7) (6,7,8,9) (6,7,8,9) (1,2,3,4) (6,7,8,9) (6,7,8,9) (3,4,6,7)

Severity TM1:(0.75,1,1) (5,6,7) (6,7,8) (8,9,10) (6,7,8) (4,5,6) (1,2,3) (2,3,4) (6,7,8)
TM2:(0.5,0.75,1) (4,5,6) (6,7,8) (8,9,10) (5,6,7) (5,6,7) (1,2,3) (3,4,5) (7,8,9)
TM3:(0.5,0.75,1) (3,4,5) (7,8,9) (9,10,10) (6,7,8) (4,5,6) (2,3,4) (2,3,4) (7,8,9)
TM4:(0.75,1,1) (6,7,8) (6,7,8) (7,8,9) (5,6,7) (5,6,7) (1,2,3) (3,4,5) (7,8,9)
TM5:(0.75,1,1) (5,6,7) (8,9,10) (7,8,9) (6,7,8) (4,5,6) (1,2,3) (1,2,3) (7,8,9)

Detection TM1:(0,0.25,0.5) (4,5,6) (4,5,6) (4,5,6) (3,4,5) (4,5,6) (4,5,6) (3,4,5) (1,1,2)
TM2:(0,0.25,0.5) (4,5,6) (4,5,6) (3,4,5) (3,4,5) (3,4,5) (3,4,5) (2,3,4) (1,2,3)
TM3:(0.25,0.5,0.75) (5,6,7) (5,6,7) (3,4,5) (4,5,6) (4,5,6) (4,5,6) (2,3,4) (2,3,4)
TM4:(0,0.25,0.5) (4,5,6) (4,5,6) (3,4,5) (5,6,7) (5,6,7) (4,5,6) (2,3,4) (3,4,5)
TM5:(0,0.25,0.5) (3,4,5) (5,6,7) (2,3,4) (4,5,6) (4,5,6) (4,5,6) (1,2,3) (2,3,4)

Fig. 1: Basic fatigue failure for turbine and compressor blades
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When t = 1000, we can derive 3,4,8R ( ) 0.9970t = . By the 
same way, when x5 and x7 are correlated, the reliability  
is

3.426 3.32( /3132 ) 2.5 ( /3563) 2.5 0.4( [( ln(1 )
5,7

) ( ln(1 )) ] )R ( ) 1 t te eet − −− − − + − −= − (25)

When t = 1000, we derive 5,7R ( ) 0.9954t = . When 
only  have x6 bottom event, reliability is expressed as 

3.4( /4165) 2.5 0.4( [( ln(1 )) )
6

]R ( ) 1 teet −− − −= − , i.e. when the life t = 1000 
for blade serration fatigue, 6R ( ) 0.9922t =  is obtained.

4.4  FPWGM RPN evaluation and analysis

In multiple failure mode assessment, based on Zadeh’s 
extension principle [29], trapezoidal fuzzy numbers are 
calculated. The new FMECA report and FRPN of MCS for Fig. 2: FRPNs of eight failure modes

Table 3: Interval number matrix fuzzy assessment information of eight failure modes and relative importance weights of three risk factors

Failure modes Occurrence Severity Detection

1 =

1 (1.5,2.5,3.75,4.75)OR =

1 (4.3,5.3,6.3)SR =

1 (4.1,5.1,6.1)DR
2 =

2 (4.65,5.65,7.1,8.1)OR =

2 (6.7,7.7,8.7)SR =

2 (4.5,5.5,6.5)DR
3 =

3 (7.4,8.4,9.4,9.7)OR =

3 (7.95,8.95,9.65)SR =

3 (2.9,3.9,4.9)DR
4 =

4 (6.5,7.5,8.5,9.25)OR =

4 (5.6,6.6,7.6)SR =

4 (3.8,4.8,5.8)DR
5 =

5 (1.8,2.8,4.2,5.2)OR =

5 (4.4,5.4,6.4)SR =

5 (3.9,4.9,5.9)DR
6 =

6 (6.8,7.8,8.8,9.4)OR =

6 (1.3,2.3,3.3)SR =

6 (3.75,4.75,5.75)DR
7 =

7 (6.5,7.5,8.5,9.25)OR =

7 (2.2,3.2,4.2)SR =

7 (1.9,2.9,3.9)DR
8 =

8 (1.9,2.9,4.35,5.35)OR =

8 (6.9,7.9,8.9)SR =

8 (1.8,2.7,3.7)DR
Importance weights = (0.4875,0.7375,0.9375)Ow = (0.6125,0.8625,1)Sw = (0.075,0.325,0.575)Dw

Table 4: Computed α-level sets and defuzzified centroid of the FRPNs for eight failure modes

α Failure modes

1 2 3 4 5 6 7 8

0 [2.337,5.840] [5.121,8.390] [5.508,9.432] [5.119,8.407] [2.613,6.004] [2.292,6.148] [2.728,6.601] [2.715,7.280]
0.1 [2.504,5.719] [5.251,8.249] [5.726,9.295] [5.269,8.249] [2.770,5.857] [2.487,5.997] [2.884,6.379] [2.880,7.052]
0.2 [2.670,5.597] [5.382,8.110] [5.942,9.155] [5.418,8.093] [2.927,5.767] [2.680,5.799] [3.041,6.162] [3.047,6.830]
0.3 [2.835,5.475] [5.514,7.973] [6.156,9.012] [5.566,7.938] [3.082,5.623] [2.872,5.614] [3.200,5.949] [3.217,6.615]
0.4 [2.999,5.353] [5.647,7.837] [6.368,8.866] [5.712,7.785] [3.236,5.528] [3.061,5.440] [3.361,5.742] [3.390,6.405]
0.5 [3.161,5.230] [5.780,7.703] [6.578,8.717] [5.857,7.633] [3.388,5.393] [3.248,5.242] [3.523,5.538] [3.565,6.200]
0.6 [3.321,5.107] [5.915,7.570] [6.785,8.565] [6.002,7.482] [3.539,5.280] [3.433,5.067] [3.687,5.338] [3.744,6.001]
0.7 [3.480,4.984] [6.050,7.439] [6.990,8.410] [6.145,7.333] [3.689,5.166] [3.616,4.890] [3.853,5.143] [3.925,5.806]
0.8 [3.638,4.860] [6.186,7.309] [7.193,8.252] [6.287,7.184] [3.837,5.053] [3.796,4.711] [4.021,4.950] [4.110,5.615]
0.9 [3.794,4.736] [6.323,7.181] [7.394,8.091] [6.428,7.037] [3.985,4.939] [3.975,4.530] [4.190,4.762] [4.298,5.427]
1 [3.949,4.612] [6.461,7.052] [7.592,7.926] [6.569,6.891] [4.130,4.825] [4.151,4.347] [4.362,4.576] [4.489,5.244]
Deffuizified 

centroid
4.170 6.746 7.596 6.750 4.373 4.243 4.572 4.915

Priority 
ranking

8 3 1 2 6 7 5 4
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fatigue failure of blades are shown in Table 5 by using 
Boolean operation from Eqs. (12) and (13).

The centroid value of each FRPN listed in Table 5 is 
calculated [16] and regarded as the old RPN. The new RPN 
and their rankings are derived by multiplying failure prob
ability weight, as shown in Table 6.

It can be observed from Table 6 that new risk priority 
ranking has changed after considering relatively proba
bility weight, in which, the risk priority ranking of MCS 
{x1, x7} rise from four to three, namely, the correlative risk 
of x1 and x7 failure modes increase after considering fail
ure probability weight of MCS based on Copula function. 
Instead, the risk of MCS {x5, x7} has reduced. This is 
more  consistent with the actual situation that the blade 
fatigue caused by high temperature and thermal stress is 
seldom seen, however, corrosion is a more common failure 
mode.

5 Conclusions
In this paper, Copula theory has been successfully in
corporated into FMECA and MCS theory to quantitative 
evaluate FRPN under multiple failure modes. Compared 
to  the case where only single or independent failure 
mode  is considered, the proposed quantitative analysis 

approaches improve the precision of reliability and risk 
assessment for complex systems. As illustrated by the 
case study, a new FPWGM RPN method based on Copula 
and MCS extends the definition and application scope 
of  FRPN. By multiplying a correlated failure probability 
weighted parameter to characterize the importance of 
failure cause meanwhile remaining the characteristics 
of  FMECA. The proposed method is applicable not only 
to  the quantitative analysis for turbine and compressor 
blades, but also to many other complex mechanical sys
tems. Future research will focus on the discussion and 
quantitative analysis of dynamic FTA considering failure 
mode correlations.

Nomenclature
FMECA Failure mode, effects and criticality analysis
RPN Risk priority number
FTA Fault tree analysis
MCS Minimum cut sets
FPWGM    Fuzzy probability weight geometric mean
FRPN Fuzzy risk priority number
O Probability of occurrence
S Severity
D Detectability
FWGM Fuzzy weighted geometric mean
BASA Benchmark adjustment search algorithm
LIM Linear interval mapping
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Table 5: New FMECA report

Failure mode Potential failure mode Potential failure cause FRPN

Top event occurrence {x1, x7} x1 (6.376,17.222, 21.105,38.550)
x7

{x1, x2, x4} x1 (61.260,167.576,224.136,411.936)
x2

x4

{x3, x4, x8} x3 (76.561,223.866,286.414,577.246)
x4

x8

{x5, x7} x5 (7.128,18.016,22.076,39.631)
x7

{x6} x6 (2.292,4.151,4.347,6.148)

Table 6: New RPN rankings

Potential 
failure 
mode

Old RPN Old 
RPN 
rank

Failure 
probability 
weights

New RPN New 
RPN 
rank

{x1, x7} 20.741 4 5 103.704 3
{x1, x2, x4} 215.232 2 2.6 559.604 2
{x3, x4, x8} 289.791 1 3 869.372 1
{x5, x7} 21.609 3 4.6 99.401 4
{x6} 4.243 5 7.8 33.098 5
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