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A B S T R A C T

The traditional stress-strength interference (SSI) model regards the strength and the stress as two continuous
random variables, but in practical engineering, the strength may be a stochastic degradation process. Besides
continuous working load, a mechanical system often suffers from shock loads as well. How to calculate the
dynamical reliability under complex load is a challenge that needs to be resolved. This paper proposes a gen-
eralized dynamic reliability model for the calculation of system reliability under complex load. The proposed
model is available for system reliability problems under deterministic strength degradation or stochastic strength
degradation processes. Six sigma and Gauss-Legendre quadrature formula are adopted to calculate the system
reliability. A case study under three different conditions is presented to illustrate the application of the proposed
model. The accuracy of the proposed method is compared with MCS.

1. Introduction

In mechanical products, the working condition of a component (or
system) is interacted by the generalized strength and the stress. Herein, the
generalized stress has a wide scope such as displacement, temperature,
force, pressure, and vibration, which can induce failures, and the strength
implies the ability to resist the failures. When the stress is less than the
strength, the component (or system) works properly; otherwise, failure oc-
curs [1]. The stress-strength interference (SSI) method is one of the com-
monly used methods for structural reliability analysis. The existing methods
such as the first-order reliability method (FORM), the second-order relia-
bility method (SORM) and simulation techniques (which are applicable to a
broader class of problems with less restrictive assumptions) are now avail-
able, but the SSI method is still a popular method for its simple form and
computational simplicity. The traditional SSI model regards the strength
and the stress as two continuous random variables, the failure will occur
when the probability density function (PDF) of strength and stress overlap.

The SSI is the basis of reliability modeling based on physics of failure
(PoF). Many efforts have been made to improve the traditional SSI model
and extend the scope of its application. So far, the methods for reliability
modeling are divided into two types: static modeling and dynamic mod-
eling. The static modeling methods contain Reliability Block Diagram
(RBD), Fault Tree (FT) [2], and Binary Decision Diagram (BDD) [3]. Dy-
namic reliability modeling gained extensive attention and a large amount of
research works have been done during the past decades. For dynamic

reliability analysis, the available reliability analysis methods can be roughly
classified into three categories: up-crossing rate methods/first-passage
methods, analytical methods do not based on up-crossing rate, and the
sampling-based methods. The well-known first-passage formula has estab-
lished the foundation for the concept of first-passage failure in dynamic
reliability theory [4]. However, the first-passage formula is hard to use in
real applications because of its complicated integral operation. Subse-
quently, a new method was proposed to calculate the first-passage prob-
ability for structure based on continuous Markov process [5] and the ana-
lytical solution for the first-passage time was derived [6]. However, the
above two methods are only applicable to some specific cases of the limit-
state functions. Coleman [7] proposed Poisson-based approximation for
first-passage frequency calculations. Poisson-based approximation has built
a bridge between the up-crossing rates and the dynamical reliability of the
structure; however, its accuracy is based on a precondition that the crossings
of the structural responses from the safety state to the failure state belong to
rare events and furthermore they should be independent from each other.
Crandall et al. [8] introduced the numerical simulation method for solving
the first-passage problem. Spanos and Kougioumtzoglou [9] studied the
first-passage method for a class of lightly damped nonlinear oscillators
under random excitations. Rackwitz [10] and Melchers and Beck [11] ap-
plied the outcrossing rate method to address dynamic uncertain loads in
time-variant reliability problems. Hu and Du [12] developed a more accu-
rate method for time-dependent reliability analysis with joint up-crossing
rates to consider the dependence of up-crossings. Jiang et al. [13] proposed
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a time-dependent system reliability analysis method, which transformed the
evaluation of the system outcrossing rates into the calculation of a time-
invariant system reliability. Andrieu-Renaud et al. [14] proposed the PHI2
method to calculate outcrossing rates, and this method is simple and easy to
understand. However, the computational efficiency may decrease for some
complex or nonstationary problems. Zhang et al. [15] proposed a response
surface based time-dependent reliability analysis method for structures
under stochastic loads. Li and Mourelatos [16] used a niching genetic al-
gorithm to calculate time-variant reliability in power problems. Singh et al.
[17] proposed an importance sampling method for time-variant reliability
analysis. Jiang et al. [18] proposed a novel time-variant reliability analysis
method based on stochastic process discretization, which is effective for
complex structures. Wang et al. [19] proposed a simulation basedmethod to
estimate two types of time-varying failure rate of dynamic systems. Peng
et al. [20] used inverse Gaussian process models and Bayesian degradation
for time-varying degradation rates. Mourelatos et al. [21] proposed a re-
liability analysis method for time-dependent problems using the total
probability theorem and the concept of composite limit state. Hu and Du
[22] proposed a sampling approach to obtain the extreme value distribution
of a stochastic process, which can calculate the dynamic reliability effi-
ciently. Mi et al. [23] proposed a belief universal generating function ana-
lysis method of multi-state systems under epistemic uncertainty and
common cause failures. Wang and Wang [24] proposed a time-dependent
reliability-based design optimization method based on a nested extreme
response surface technique. Recently, Zayed et al. [25] carried out the time-
variant reliability assessment for ship structures using the fast integration
techniques. Mi et al. [26] proposed a reliability analysis method for complex
multi-state system with common cause failure. Liu et al. [27] introduced
detailed comparisons of the two non-probabilistic structural reliability
analysis methods on aspects such as modeling ideas, model structures,
precision, etc. Wang and Wang [28] proposed a confidence-based meta-
modeling approach for efficient sensitivity-free dynamic reliability analysis.
Guo et al. [29] proposed a Bayesian degradation assessment of CNC ma-
chine tools considering unit non-homogeneity. Park [30] derived the time-
dependent reliabilities of the wireless networks with dependent failures. Mi
et al. [31] proposed reliability assessment of complex electromechanical
systems under epistemic uncertainty. Li et al. [32] proposed a dynamic
reliability assessment method for multi-state phased mission system with
non-repairable multi-state components. Yang et al. [33] proposed a Baye-
sian approach for sealing reliability analysis considering the non-competing
relationship of multiple degradation processes.

Although many aforementioned studies have been done, the shock
loads which may happen in the service of mechanical products are not
considered. In this paper, a generalized dynamic reliability model is
developed under complex load profile. The model is not only applicable

to homogeneous Poisson loading processes with normally distributed
load amplitudes, but also can deal with nonhomogeneous Poisson loads.
For a system under stochastic strength degradation and stochastic load,
it is very difficult to calculate system reliability by the direct integral
methods. In this paper, six sigma and Gauss-Legendre quadrature for-
mula are used to calculate the system reliability.

The rest of this article is organized as follows. Section 2 lists some
assumptions on which the established dynamic reliability model is
based. A generalized dynamic reliability model for systems under
complex load is proposed in Section 3. Section 4 provides a numerical
integration method for dynamic reliability calculation. A case study
under different conditions is presented in Section 5. Conclusions are
finally summarized in Section 6.

2. Assumptions

In this paper, the generalized dynamic reliability model is estab-
lished under some assumptions as follows:

(1) The working load follows a stochastic process Lo(C, t) and the
strength degradation can be modeled as a stochastic process S(Φ, t).

(2) The working load, strength degradation and shock loads are sta-
tistically independent from each other.

(3) Denote that = ⋯C C CC ( , , , )m1 2 and = …φ φ φΦ ( , , , )n1 2 . Random
variables ci/φi with known PDFs in random variable vector C/Φ are
independent from each other. Then, = ∏ =f f cc( ) ( )i

m
C iC 1 i ,

= ∏ =f φ f φ( ) ( )i
n

iΦ 1 Φi , where m and n are the numbers of random
variables in C and Φ, respectively.

(4) The arrivals of shock loads in a certain time interval that follows a
Poisson process with intensity λ(t). The amplitudes of shock loads
follow a normal distribution with mean μLs and standard deviation σLs.

3. The generalized dynamic reliability model

In practical engineering, besides continuous working loads, a mechan-
ical product is often subjected to discrete shock loads as well. If the discrete
shock loads appear at time instant t, the product bears a total load that
equals to the sum of two loads, i.e., = ++L t L t LC C( , ) ( , )o s o s; otherwise,
the product bears continuous working loads only, =+L t L tC C( , ) ( , )o s o . In
the other hand, for aging or wear-out reasons, the strength of a system is
often treated as a degradation process. According to the different regula-
rities of degradation, it can be divided into deterministic degradation and
stochastic degradation. Dynamic reliability models under complex load and
two types of degradation are discussed in the following sections, respec-
tively.

ACRONYMS

SSI stress-strength interference
PDF probability density function
FORM first-order reliability method
SORM second-order reliability method
RBD reliability block diagram
FT fault tree
BDD binary decision diagram
PoF physics of failure
MCS Monte Carlo simulation

NOTATIONS

Lo(C, t) continuous working load, a stochastic process
S(Φ, t) strength degradation model, a function of t and Φ

= …C CC ( , , )1 2 a variable vector, related to working load
= …φ φΦ ( , , )1 2 a variable vector, related to strength

t time instant or service duration
fC(c) joint probability density function of random variables

…C C, ,1 2

fΦ(φ) joint probability density function of random variables
…φ φ, ,1 2

λ(t) intensity function of Poisson process
Ls the shock load, a random variable
μLs mean value of shock load
σLs standard deviation of shock load

+L tC( , )o s complex load, equals the sum of working load and the
shock load

R(t) reliability in a service duration
Δt time increment
K(t) shock load occurs at time instant t
K t( ) shock load does not occur at time instant t

+f (·)Lo s PDF of complex load
xk Gauss-Legendre integration points
Ak Gauss-Legendre integration coefficients
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3.1. Deterministic degradation process

For a given system, the continuous working load is a stochastic process
and the shock load is a random variable. When the degradation process of
the strength is deterministic, the strength S(Φ, t) is a constant (not a random
variable) at any given time instant. The interaction between the complex
load and the strength is illustrated in Fig. 1.

According to the SSI theory, the dynamic reliability at time instant t is
defined as

= < ∀ ∈+R t L τ S τ τ tC( ) Pr{ ( , ) (Φ, ), (0, )}o s (1)

where +L tC( , )o s is the complex load, and equals to the sum of working
load and the shock load.

Let K(t) be the shock load occurs at time instant t, and K t( ) be the shock
load does not occur. According to assumption 3, the arrivals of shock loads
in a certain time interval follow a Poisson process with intensity function
λ(t).

For ∀ ∈ +τ t t t( , Δ ), we have

= +K τ λ τ t o tPr{ ( )} ( )Δ (Δ ) (2)

and

= − = − −K τ K τ λ τ t o tPr{ ( )} 1 Pr{ ( )} 1 ( )Δ (Δ ) (3)

The whole probability formula yields

+ = × < ×
+ × ∀ ∈ +

= × <

× + + × − − ∀

∈ +

+

+

R t t R t L τ S τ K τ
R t K τ τ t t t

R t L τ S τ

λ τ t o t R t λ τ t o t τ

t t t

C

C

( Δ ) ( ) [Pr{ ( , ) (Φ, )} Pr{ ( )}]
( ) Pr{ ( )}, ( , Δ )

( ) Pr{ ( , ) (Φ, )}

[ ( )Δ (Δ )] ( ) [1 ( )Δ (Δ )],

( , Δ )

o s

o s

(4)

Eq. (4) can be rewritten as

= × < × ⎡⎣ + ⎤⎦
− × ⎡⎣ + ⎤⎦ ∀ ∈ +

+ −
+R t L τ S τ λ τ

R t λ τ τ t t t

C( ) Pr{ ( , ) (Φ, )} ( )

( ) ( ) , ( , Δ )

R t t R t
t o s

o t
t

o t
t

( Δ ) ( )
Δ

(Δ )
Δ

(Δ )
Δ (5)

when Δt→ 0, then τ→ t, → 0o t
t

(Δ )
Δ , and this yields

= × × < −+
R t

t
R t λ t L t S tCd ( )

d
( ) ( ) [Pr{ ( , ) (Φ, )} 1]o s (6)

Noting that =R (0) 1, solving the differential equation in Eq. (6) yields

=

=

∫

∫ ∫

× < −

×⎡
⎣
⎢ − ⎤

⎦
⎥

+

−∞ +

R t e

e

( ) λ ξ L ξ S ξ ξ

λ ξ f ξ ξ

C

C C

( ) [Pr{ ( , ) (Φ, )} 1]d

( ) ( , )d 1 d

t
o s

t S ξ
Lo s

0

0
(Φ, )

(7)

where +f (·)Lo s is the PDF of the complex load.

3.2. Stochastic degradation process

When the degradation of the strength is a stochastic process, the
strength at any given time instant is a random variable. The whole
interaction process between stochastic strength degradation, stochastic
working load and random shock load is illustrated with Fig. 2.

Combining Eq. (7) with the whole probability formula yields the
system reliability at time instant t as follows

∫

∫

= =

=
∫ ∫×⎡

⎣
⎢ − ⎤

⎦
⎥−∞ +

R t R t S t S φ t f φ φ

e f φ φ

( ) [ (Φ, ) ( , )] ( )d

( )d

φ

φ

λ ξ f ξ ξC C

Φ

( ) ( , )d 1 d
Φ

t S φ ξ
Lo s0

( , )

(8)

Eq. (8) indicates that the system reliability under complex loads and
stochastic strength degradation is no longer an exponential distribution.
Formally, it is difficult to obtain an explicit expression. How to calculate R(t)
becomes a problem that needed to be solved. Gauss-Legendre quadrature
formula will be introduced in next session to solve the problem.

4. Reliability analysis and calculation

Gauss-Legendre numerical integration possesses +n2 1 order accuracy
[34], so we select the Gauss–Legendre quadrature formula to calculate the
dynamic reliability.

For convenience, denoting = ×H t φ λ t( , ) ( ) ∫ −−∞ +f tC C[ ( , )d 1]S φ t
L

( , )
o s

and M = ∫t φ e( , ) H ξ φ ξ( , )dt
0 , and then

∫=R t M t φ f φ φ( ) ( , ) ( )d
φ

Φ
(9)

and

∫ ∫ ∫+ = = +
+ +

M t t φ e e( Δ , ) H ξ φ ξ H ξ φ ξ H ξ φ ξ( , )d ( , )d ( , )d
t t t

t
t t

0
Δ

0
Δ

(10)

If the time increment Δt is small enough, we have

∫ ≈
+ ++

e eH ξ φ ξ H t φ H t t φ t( , )d [ ( , ) ( Δ , )]
2 Δt

t tΔ
(11)

Using the Taylor series expansion, we obtain

= + ++ +

+ +
e

t o t1 Δ (Δ )

t

H t φ H t t φ

Δ

[ ( , ) ( Δ , )]
2

H t φ H t t φ[ ( , ) ( Δ , )]
2

(12)

Substituting Eqs. (11) and (12) into Eq. (10) yields

+ ≈

= ×

≈ +

∫ +

+ +

+ +

+ +

( )

M t t φ e

M t φ e

M t φ t

( Δ , )

( , )

( , ) 1 Δ

H ξ φ ξ t

t

H t φ H t t φ

( , )d Δ

Δ

[ ( , ) ( Δ , )]
2

t H t φ H t t φ

H t φ H t t φ

0
[ ( , ) ( Δ , )]

2

[ ( , ) ( Δ , )]
2

(13)

Fig. 1. The SSI model under deterministic strength degradation and complex
load.

Fig. 2. The SSI model under stochastic strength degradation and complex load.
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Combining Eqs. (9) and (13) yields

∫

∫

∫

+ = +

≈ × +

= + + +

+ +( )
R t t M t t φ f φ φ

M t φ t f φ φ

R t M t φ H t φ H t t φ f φ φ

( Δ ) ( Δ , ) ( )d

( , ) 1 Δ ( )d

( ) ( , )[ ( , ) ( Δ , )] ( )d

φ

φ

H t φ H t t φ

t

φ

Φ

[ ( , ) ( Δ , )]
2 Φ

Δ
2 Φ

(14)

For a single variable, =φ φ, applying the Gauss-Legendre quad-
rature formula to the second item of Eq. (14) to yield

∫

∫

+ +

= + +

= ∑ + +−
=

M t φ H t φ H t t φ f φ φ

M t φ H t φ H t t φ f φ φ

A M t φ H t φ H t t φ f φ

( , )[ ( , ) ( Δ , )] ( )d

( , )[ ( , ) ( Δ , )] ( )d

( , )[ ( , ) ( Δ , )] ( )

φ

φ
φ

φ φ
k
m

k k k k k

Φ

Φ

2 1 Φ

l
u

u l
(15)

where = +− +φ xk
φ φ

k
φ φ

2 2
u l u l , m is the number of nodes, xk are the nodes of

Gauss-Legendre quadrature formula, and Ak are the corresponding coeffi-
cients. The points and coefficients of Gauss-Legendre integration are listed
in Table 1.

When φ is a vector with two random variables, =φ φ φ( , )1 2 ,
Quadratic Gauss-Legendre quadrature formula can be used, we have

∫

∑ ∑

∏ ∑ ⎧
⎨⎩

∑ ⎫
⎬⎭

+ +

=
−

⎧
⎨
⎩

−
+ + ⎫

⎬
⎭

=
−

+ +

= =
=

=

= = =
=

=

M t φ H t φ H t t φ f φ φ

φ φ

A
φ φ

A M t φ H t φ H t t φ f φ

φ φ
A A M t φ H t φ H t t φ f φ

( , )[ ( , ) ( Δ , )] ( )d

2

2
{ ( , )[ ( , ) ( Δ , )] ( )}

2
{ ( , )·[ ( , ) ( Δ , )] ( )}

φ

U L

k

m

k
U L

k

m

k φ φ k
φ φ k

i

iU iL

k

m

k
k

m

k φ φ k
φ φ k

Φ

2 2

1

1 1

1
Φ 1 1

2 2

1

2

1 1
Φ 1 1

2 2

(16)

where = + =− +φ x i, 1, 2ik
φ φ

k
φ φ

2 2
iU iL iU iL ,m is the number of nodes, xk are

the nodes of Gauss-Legendre quadrature formula, and Ak are the corre-
sponding coefficients.

Generalizing φ to n-dimensional vector = …φ φ φ φ( , , , )n1 2 yields
(17)

Combining Eqs. (14) and (17), the numerical recurrence formula
can be used for calculating R(t) at any time instant

= = …t j t j·Δ ( 1, 2, )j . The R(tj) can be given by
(18)

where = +− −
+− −( )M t φ M t φ t( , ) ( , ) 1 Δj j

H t φ H t φ
1 2

[ ( , ) ( , )]
2

j j2 1 , =t 00 ,

=R (0) 1, and =M t φ( , ) 10 .
The proposed dynamic reliability calculation method is summarized

as follows:

Step 1: Establish the corresponding dynamic reliability model under
strength degradation according to the definition of dynamic relia-
bility;
Step 2: Identify the working condition, including PDF of the con-
tinuous working stress, the regularity of strength degradation, the
density of shock load and the PDF of the amplitudes;
Step 3: Select the corresponding Gauss-Legendre quadrature formula
to calculate the dynamic reliability.

5. Numerical examples

In this section, the contact fatigue reliability of a three-stage spur
gear reducer, shown in Fig. 3 [36], is calculated under different con-
ditions. Case 1 is for deterministic strength degradation and a homo-
geneous Poisson process shock load, Case 2 is for stochastic strength
degradation and a homogeneous Poisson process shock load, and Case 3
is for stochastic strength degradation and a non-homogeneous Poisson
process shock load.

Partial parameters of the reducer are listed in Table 2. For gear 3,
the Hertz contact stress of the tooth surface is estimated as [37]

=σ C F
b d I

K K KH p
t

g
v o m

3

3 3 (19)

where σH is the Hertz contact stress, Cp is the elastic coefficient of the
material, Ft3 is the tangential force of gear 3, b3 and dg3 are the face
width and the diameter of gear 3, respectively, Kv is the velocity factor,
Ko is the overload factor, Km is the mounting factor, and I is a geometry
factor given by

=
+

I
d

d d
α α

2( )
sin cosg

g p

3

3 3 (20)

where α is the pressure angle of pitch circle, dg3 and dp3 are the pitch
diameters of gear 3 and pinion 3, respectively.

Since each gear set provides torque multiplication, the tangential
forces of gear 3 can be expressed as

= ×F T
d

d d
d d

2
t

in

p

g g

p p
3

3

1 2

1 2 (21)

where Ft3 is the tangential forces of gear 3, Tin is the driving torque, dg1
and dp1 are the pitch diameters of gear 1 and pinion 1, respectively, dg2
and dp2 are the pitch diameters of gear 2 and pinion 2, respectively.

Combining Eqs. (19)–(21) yields

Table 1
Gauss-Legendre integration points and coefficients ( =m 11) [35].

xk ±0.978229 ±0.887063 ±0.730152 ±0.519096 ±0.269543 0
Ak 0.055669 0.125580 0.186290 0.233194 0.262805 0.272925
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=
+

σ C
T d d d d

b d d d d α α
K K K

4 ( )
sin cosH p

in g g g p

p p p g
v o m

1 2 3 3

3 1 2 3 3
2

(22)

Monte Carlo simulation is used to get the sample points and the
contact stress is normally distributed with mean 526.8MPa and stan-
dard deviation 42.5MPa. Then three different cases are discussed to
demonstrate the applicability of the proposed method.

Case 1: Deterministic strength degradation and homogeneous
Poisson process shocks

For the reasons of fatigue or aging, the strength of a gear may de-
crease with time. For deterministic strength degradation, assume that
the strength can be modeled as = −S t φ t(Φ, ) (1 0.00025 )0 and the in-
itial strength φ0 is 800MPa, and then for a given time instant t,

= − = −S t φ t t(Φ, ) (1 0.00025 ) 800 0.20 is a constant. The arrivals of
shock loads follow a homogeneous Poisson process with intensity
function = −λ t( ) 1.0 hr 1, the amplitudes of shock loads Ls follow a
normal distribution with mean value 100MPa and standard deviation
20MPa. Considering the uncertainty of working environment the con-
tinuous working load is modeled as = +L t C tC( , ) (1 0.0001 )o , where C
follows a normal distribution with mean value =μ 526.8C MPa, and the
standard deviation MPa. According to the additivity of normal dis-
tribution, +L tC( , )o s follows a normal distribution. And the mean value
and standard deviation can be respectively calculated as

= +

= + +
+ +μ t t σ t

t

( ) 626.8 0.05268 MPa, ( )

42.5 ·(1 0.0001 ) 400 MPa
L L

2 2

o s o s

If a variable x follows a normal distribution N(μ, σ2), then the
probability that x exceeds the interval − +μ σ μ σ[ 3 , 3 ] and

− +μ σ μ σ[ 6 , 6 ] are no more than 0.3% and 2e-9, respectively [38].
The “six sigma” (6σ) rule is used for simplicity. Combining with Eq. (7),
we then have

∫ ∫
⎧

⎨
⎪

⎩
⎪

= ×
⎧
⎨
⎩

−
⎫
⎬
⎭

=

−
− −

+ + +

− +
× +f t e C ξ

R t e

( ) 1 d 1 d

( )

t
μ ξ σ ξ

ξ
π σ ξ

f t

1 0 ( ) 6 ( )
800 0.2 1

2 ( )

( )

Lo s Lo s Lo s

C μLo s ξ

σ Lo s ξ

[ ( )]2

2 [ ( )]2

1

(23)

Direct integral is used to Eq. (23) and the reliability curve is shown
in Fig. 4.

Generally, different initial strengths will have different reliability
curves. For the sake of comparisons, the reliability curves corre-
sponding to initial strengths 720MPa, 800MPa, and 850MPa are
drawn in Fig. 5.

For different λ(t), the relationship between R(t) and t are shown in
Fig. 6.

Figs. 5 and 6 show that the shape and the scale of reliability curve
change with the initial strength φ0 and the intensity λ(t). Therefore, for
the reliability curve under deterministic strength degradation and

Fig. 3. A three-stage spur gear reducer.
Fig. 4. Reliability curve between R(t) and t.

Table 2
Partial parameters of the reducer.

Description Symbol Mean Standard
deviation

Distribution type Units

Driving torque Tin 108 11 Normal N•m
Pressure angle on

pitch circle
α 20 0 / degree

Velocity factor Kv 2.0 0 / none
Overload factor Ko 1.0 0 / none
Mounting factor Km 1.6 0 / none
Face width of

gear 3
b3 15 2.0 Normal mm

Elastic coefficient Cp 19.1 2.0 Normal (MPa)1/2

Pitch diameter of
gear 1

dg1 50 5.0 Normal mm

Pitch diameter of
gear 2

dg2 66 6.6 Normal mm

Pitch diameter of
gear 3

dg3 85 8.5 Normal mm

Pitch diameter of
pinion 1

dp1 30 1.5 Normal mm

Pitch diameter of
pinion 2

dp2 22 2.0 Normal mm

Pitch diameter of
pinion 3

dp3 30 1.0 Normal mm

Fig. 5. Reliability curves corresponding to different initial strengths.
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homogeneous Poisson process shocks, φ0 and λ(t) can be regarded as
the shape parameter and the scale parameter, respectively.

Case 2: Stochastic strength degradation and homogeneous Poisson
process shocks

For stochastic strength degradation, assume that the strength can be
expressed as = −S t φ t(Φ, ) (1 0.00025 )0 , where φ0 follows a normal
distribution with the mean value =μ 800 MPaφ0

and the standard de-
viation =σ 20 MPaφ0 . For a given time instant t,

= −S t φ t(Φ, ) (1 0.00025 )0 is a random variable. The other data are the
same as Case 1.

According to the “six sigma” rule, the lower and upper bounds for
integration variable φ are − =μ σ6 680 MPaφ φ0 0 and

+ =μ σ6 920 MPaφ φ0 0 , respectively. Eq. (8) is changed into

∫ ∫

∫

⎧

⎨

⎪⎪

⎩
⎪
⎪

= ×
⎧
⎨
⎩

−
⎫
⎬
⎭

=

−
− −

×
−

+ + +

− +
× +

−
×

f φ t e C ξ

R t e e φ

( , ) 1 d 1 d

( ) d

t
μ ξ σ ξ
φ ξ

π σ ξ

f φ t
π

2 0 ( ) 6 ( )
(1 0.00025 ) 1

2 ( )

680
920 ( , ) 1

2 20

Lo s Lo s Lo s

C μLo s ξ

σ Lo s ξ

φ

[ ( )]2

2 [ ( )]2

2
( 800)2

2 202

(24)

Using Eq. (18) and to set =tΔ 0.1, we obtained the system reliability
at any time instant =t n t·Δ . To verify the accuracy of the proposed
method, Monte Carlo simulation is used for comparisons and the re-
liability curves are shown in Fig. 7.

As is shown in Fig. 7, it has shown the high accuracy of the proposed
method.

Case 3: Stochastic strength degradation and nonhomogeneous
Poisson process shocks

Assume that the shock load follows a nonhomogeneous Poisson
process with intensity function = − −λ t e( ) hrt0.002 1, and the other data
are the same as Case 2.

Eq. (24) is rewritten as

∫ ∫

∫

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

= ×
⎧
⎨
⎩

−
⎫
⎬
⎭

=

−
−

− −

×
−

+ + +

− +
× +

−
×

f φ t e e C

ξ

R t e e φ

( , ) d

1 d

( ) d

t ξ
μ ξ σ ξ
φ ξ

π σ ξ

f φ t
π

3 0
0.002

( ) 6 ( )
·(1 0.00025 ) 1

2 ( )

680
920 ( , ) 1

2 20

Lo s Lo s Lo s

C μLo s ξ

σ Lo s ξ

φ

[ ( )]2

2 [ ( )]2

3
( 800)2

2 202

(25)

Set = −tΔ 0.1 hr 1, and Eq. (18) is used for calculating system relia-
bility. The intensity function of nonhomogeneous Poisson process and
the reliability curves under different intensity functions are drawn in
Fig. 8.

Fig. 8 shows that as the intensity increases, the reliability decreases
quickly and preventive maintenance is desirable to keep the high re-
liability of the system.

6. Conclusions

Based on the SSI theory, a generalized dynamic reliability model is
proposed for considering uncertain strength deterioration and complex
load condition. The main advantage of the proposed model is that it can
predict the dynamic reliability of the system under complex load, de-
terministic strength degradation or stochastic strength degradation. For
stochastic strength degradation, it is difficult to obtain the explicit
system reliability model. The “Six sigma” rule and Gauss-Legendre
quadrature formula are used for approximating the system reliability,
which transform the integral into the sum of a series of polynomials
with high accuracy. Monte Carlo simulation is used for the comparisons
to demonstrate the accuracy of the proposed method. The results have
demonstrated the feasibility of the proposed method. A numerical ex-
ample under different profiles is given to illustrate the applicability of
the proposed method. The studies show that for deterministic strength
degradation, the initial strength and Poisson intensity can be regarded
as the shape parameter and scale parameter. For a system of which the
strength follows a stochastic degradation process and the shock follows
a homogeneous or nonhomogeneous Poisson process, given the re-
quired system reliability, pro-active maintenance can be implemented
before the system enters the down state according to the reliability
curves to maintain a high system reliability. In this paper, the strength
and the stress are supposed to be statistically independent and the

Fig. 6. Reliability curve for different λ(t).

Fig. 7. Reliability curve between R(t) and t for different methods.

Fig. 8. λ(t) and reliability curves under different intensity functions.
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amplitude of shocks is normally distributed. Future work will consider
the correlations between the strength and the stress as well as stochastic
process of amplitude.
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