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Abstract—Modern engineering systems are generally composed
of multicomponents and are characterized as multifunctional.
Condition monitoring and health management of these systems
often confronts the difficulty of degradation analysis with multiple
performance characteristics. Degradation observations gener-
ally exhibit an -dependent nature and sometimes experience
incomplete measurements. These issues necessitate investigating
multiple -dependent degradations analysis with incomplete
observations. In this paper, a new type of bivariate degradation
model based on inverse Gaussian processes and copulas is pro-
posed. A two-stage Bayesian method is introduced to implement
parameter estimation for the bivariate degradation model by
treating the degradation processes and copula function separately.
Degradation inferences for missing observation points, and for
future observation points are investigated. A simulation study is
presented to study the effectiveness of the dependence modeling
and degradation inference of the proposed method. For demon-
stration, a bivariate degradation analysis of positioning accuracy
and output power of heavy machine tools subject to incomplete
measurements is provided.

Index Terms—Bayesian reliability, bivariate degradation
process, copula function, degradation analysis, inverse Gaussian
(IG) process.

ABBREVIATION AND ACRONYMS

PM Preventive maintenance.

CM Condition monitoring.

SHM System health management.

IG Inverse Gaussian.

PDF Probability density function.

CDF Cumulative distribution function.

RUL Remaining useful life.

MCMC Markov chain Monte Carlo method.
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NOTATION
Degradation process.

Mean function.

Scale parameter.

Degradation increment.

Inverse Gaussian distribution.

PDF of an inverse Gaussian distribution.

CDF of an inverse Gaussian distribution

Lifetime.

Probability of an event .

CDF of lifetime .

Bivariate copula function.

Bivariate distribution function.

Number of observed samples.

Index of observed samples with
.

Number of observation points of the th
sample.

Index of observation point of the th
sample with .

Index of bivariate degradation process
with .

th degradation process.

Degradation observation of the th
degradation process for the th sample at
the th observation time point.

Degradation increment of the th
degradation process for the th sample
between the th and the th
observation time points.

CDF of degradation increment .

Joint CDF of and .

Degradation threshold of the th
degradation process.

Reliability function.
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Remaining useful life.

Complete bivariate degradation
observation.

Incomplete bivariate degradation
observation.

Set of complete bivariate degradation
observations of the th sample.

Set of incomplete bivariate degradation
observations of the th sample.

Set of degradation increments of the th
degradation process.

Parameters of the bivariate degradation
model.

Parameters of the th degradation
process.

Parameters of copula function.

Point estimation of .

Posterior distribution of .

Prior distribution of .

Conditional distribution of given .

Density of a bivariate copula function.

Conditional copula function.

I. INTRODUCTION

C OMPLEX systems are indispensable factors in modern
society, including manufacturing systems, commercial

airplanes, and high-speed trains. The reliability of these sys-
tems has become a critical issue both for the desire of high
availability and for the pursuit of high safety [1], [2]. Gov-
ernment and industry are relying more and more heavily on
advanced methods to determine reliability of complex systems
[3], [4]. Methods such as condition monitoring (CM) [5] and
degradation analysis [6] have been developed to facilitate the
reliability assessment [7], preventive maintenance (PM) [8],
and system health management (SHM) [9] of these systems.
Traditional methods for CM and degradation analysis of

complex systems assume that only one performance indicator
is monitored, and the system experiences a failure when this
performance indicator reaches a predefined threshold. How-
ever, a complex system may possess multiple functions and
may have multiple performance indicators [10]. The methods
based on one performance indicator cannot be applied to
situations with multiple performance indicators. A classic
example for this point, which motivates the research presented
in this paper, is the degradation analysis of heavy machine
tools. The positioning accuracy and output power are two
indispensable performance indicators of heavy machine tools.
The differences of these indicators and their measurement
techniques lead to different types of degradation observations,
which are characterized as bivariate -dependent degradation
processes with incomplete degradation observations. A suitable

degradation modeling and a precise degradation analysis of
these two degradation processes are critical for the operation
and management of heavy machine tools.
In the past decades, degradation modeling has been studied

a great deal. There are generally four types of degradation
models: degradation path models [11], regression-based
models [12], Markov chain-based models [13], and stochastic
process-based models [14]. Most of these works use a single
degradation process model. To facilitate the degradation anal-
ysis of complex systems with multiple performance indicators,
Wang and Coit [15] investigated the degradation analysis of
a system with multiple degradation measurements, where a
multivariate -normal distribution based model was intro-
duced. Sari et al. [16] studied the reliability assessment of
light-emitting diodes considering the dependence between
two performance indicators. A generalized linear model and a
copula function were used to construct a bivariate degradation
process model in their paper. Recently, bivariate degradation
process models based on gamma processes, Wiener processes
and copula functions were introduced by Pan and Balakrishnan
[17], Pan et al. [18], Wang et al. [19], and Wang et al. [20].
Among these literatures, the fatigue crack data provided by

Meeker and Escobar [11] were used as numerical examples
for most of the bivariate degradation process models, although
these data were originally introduced for one-dimensional (1-D)
degradation modeling. This dataset cannot be used to represent
the problem of degradation analysis with different performance
indicators subject to incomplete degradation observations.
However, the problem of reliability analysis with incomplete
observations is common and critical for complex systems, which
has been highlighted and investigated by Zhang et al. [21],
Ye et al. [22], Ye et al. [23], and Si et al. [24]. Unfortunately,
these studies mainly focused on the degradation analysis with
only 1-D performance indicator. Bivariate degradation analysis
with incomplete observations has not been studied thoroughly,
especially for the situationwhere some degradation observations
are missing. Accordingly, a flexible method for parameter esti-
mation with incomplete observations, and a feasible method for
degradation inferences ofmissing observations are needed. Both
methods are crucial for bivariate degradation analysis and for the
follow-up PM and SHM of complex systems.
In addition, most of the proposed bivariate degradation

process models are based on classic stochastic processes, in-
cluding the Wiener process and the gamma process. Recently,
the inverse Gaussian (IG) process was introduced as a flexible
degradation process for degradation modeling by Wang and
Xu [25], Zhang et al. [21], Ye and Chen [26], Peng [27], and
Peng et al. [28]. It has been demonstrated that the IG process is
more suitable than the Wiener process and the gamma process
for degradation modeling in some applications. It is therefore
of interest to further study bivariate degradation analysis based
on the IG process models.
Based on the motivation and literature review presented

above, this paper is aimed to deliver three contributions.
• We introduce a new type of bivariate degradation process
model based on the IG processes and copula functions.

• We present a two-stage Bayesian parameter estimation
method to cope with the parameter estimations for com-
plete and incomplete degradation observations.
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• We propose two degradation inference strategies sepa-
rately for the degradation inferences of missing degrada-
tion observations, and for the degradation inferences of
future degradation observations. A method for remaining
useful life (RUL) prediction based on the missing degra-
dation observations is also provided.

In addition, a simulation study is presented to verify the ca-
pability of the proposed method. An illustrative example origi-
nating from a practical engineering project dealing with degra-
dation analysis of heavy machine tools is presented to illustrate
the proposed method. This illustrative example is characterized
as two different performance indicators with incomplete degra-
dation observations.
The remainder of this paper is organized as follows.

Section II introduces the bivariate degradation process model
with brief descriptions of the IG degradation process and the
copula functions. Section III presents the bivariate degrada-
tion analysis with incomplete degradation observations. The
two-stage parameter estimation method and the two degrada-
tion inference strategies are presented. Section IV describes the
simulation study of the proposed method, where the capability
of degradation inference is verified. Section V presents the
degradation analysis of heavy machine tools to illustrate the
proposed method. Section VI concludes this paper with several
points for future research.

II. BIVARIATE DEGRADATION MODEL BASED ON IG
PROCESSES AND COPULAS

A. IG Process Model

A simple IG process with mean func-
tion and scale parameter is denoted as

[25]. The IG process has the following
properties: with , and the
degradation increments
on disjoint intervals are -independent, and follow IG
distributions as with

.
The mean and variance of are and , where

is a monotone increasing function with , and
also an approximate description of . Classical forms of
include a power-law function, an exponential function, and a
physical-model based function [28].
The probability density function (PDF) and the cumula-

tive distribution function (CDF) of an IG distribution for
with mean and variance are

(1)

(2)

where is the standard -normal CDF.
The PDFs and CDFs of and can be obtained

based on (1) and (2).

Suppose a product is observed with a degradation process
characterized as . The product fails when the
degradation process first reaches a predefined threshold .
Accordingly, the lifetime of the product is defined as

. The CDF of the lifetime is then
obtained as

(3)

B. Copula Function
The copula function was introduced by Sklar [29], [30] to

model the dependence of a group of random variables. By
adopting a copula function, the dependence structure of the
random variables can be characterized separately from their
marginal distribution functions. In this study, we focus on
bivariate copula functions. A bivariate copula function is a
joint CDF of two uniformly distributed random variables on
the interval as

(4)

where is the joint CDF of uniformly distributed
random variables and .
Let and denote two random variables with marginal

CDFs as and . According to Sklar's theory [30],
a bivariate distribution function for and is con-
structed through a bivariate copula function as

(5)

The dependence of these two random variables is character-
ized by . By using different copula functions, different
types of bivariate distribution functions can be constructed.
Popular bivariate copulas include the following: the Gaussian
copula, the Frank copula, the Gumbel copula, and the Clayton
copula [16], [31]. For more information about copula functions,
please refer to the work by Nelsen [30] and the works presented
in [16] and [31]–[34].

C. Bivariate Degradation Model
Assume that a product has been observed with two -de-

pendent degradation processes. These degradation processes
are characterized as the IG processes: , and

. Suppose samples of the product are ob-
served, and each sample is observed at different observation
time points with . Let denote the th
observation of the degradation process for sample at
time point , where and . Let

denote the degradation incre-
ment with and .
Thedependence between and is constructed as fol-

lows.Weassume that, for the th sample, the
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Fig. 1. Plots of a bivariate degradation process based on the IG processes and the Gaussian copula with different linear coefficients.

and in the same time interval
are -dependent, whereas the degradation increments in disjoint
time intervals are -independent, e.g.,
and in and
are -independent [18], [19]. In addition, we further as-
sume that, for different samples, the degradation obser-
vations are -independent, e.g., and

from the th sample and the th
sample are -independent, regardless of whether
and are the same or disjoint. We have two
marginal CDFs, and , respectively for

and with
and . Tomodel the depen-
dence of and , a copula function is used to construct
their joint CDF as

(6)

Given the marginal CDFs and joint CDF of the degradation
increments for and , the bivariate degradation model
is then constructed as

(7)

Without loss of generality, a pictorial description of
a bivariate degradation process is shown in Fig. 1 to
demonstrate the model proposed in (7). The IG processes

, and
with , and the Gaussian
copula with linear coefficients are used. The
specific model is given as

(8)

where is the inverse CDF of a standard -normal
distribution.
Further assume that the product fails when either of and

crosses their respective degradation thresholds and
[20]. The reliability function of the product is then given as

(9)

If the degradation processes are observed up to time point
for the th sample, the RUL of this sample is expressed

as (10), shown at the bottom of the page, where and
separately denote the observations of and

up to the time point .

or and (10)
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Fig. 2. Example of incomplete bivariate degradation observations.

III. BIVARIATE DEGRADATION ANALYSIS WITH INCOMPLETE
OBSERVATIONS

There are three indispensable aspects for a coherent degrada-
tion analysis: parameter estimation, degradation inference, and
RUL prediction. In this section, a two-stage Bayesian method is
introduced to facilitate the parameter estimation. Two degrada-
tion inference strategies are introduced for the degradation infer-
ences of missing degradation observations and future degrada-
tion observations. Amethod for the RUL prediction based on pa-
rameter estimation and degradation inferences is also provided.

A. Bivariate Incomplete Degradation Observations
In this paper, we mainly focus on the bivariate degradation

process with missing observations at the tail part of the obser-
vation series. This kind of incomplete degradation observations
is presented as follows: one degradation process is observed
with complete observations, and the other is observed with in-
complete observations at the tail part of the observation series.
A pictorial description of the incomplete degradation observa-
tions is presented in Fig. 2, where is observed completely,
whereas the observations of are missing at the tail part of
the observation series for some samples. Degradation observa-
tions with other types of missing observations are not discussed
in this paper, because other types of missing observations, such
as missing observations in the intermediate part of the observa-
tion series, do not directly affect the degradation inference and
RUL prediction.
Let

denote the complete degradation observations of
the th sample. Both and are observed at the
observation time points. We further denote the incomplete
degradation observations for the th sample as

(11)

where indicates that, at the specific observation
time point , only is observed, whereas the observa-
tion of is missing. is the number of observed degrada-
tion observations of for the th sample.

B. Two-Stage Parameter Estimation Method

When the bivariate degradation process model presented in
(7) is used for degradation modeling, we categorize the model
parameters into three groups: , and . A two-stage
parameter estimation method is introduced to facilitate the pa-
rameter estimation. The basic idea of this method originated
from the work of Sari et al. [16] and Joe [35]. Specifically, the
first stage involves the estimation of the model parameters for
the marginal degradation processes, and the second stage in-
volves the estimation of model parameters for the copula func-
tion based on the input synthesized from the first stage. By
leveraging the flexibility of the Bayesian method [36] and the
two-stage parameter estimation method [16], [35], a Bayesian
version of the two-stage parameter estimation method is pre-
sented. A pictorial description of the two-stage parameter esti-
mation method is depicted in Fig. 3.
As shown in Fig. 3, the first stage is to estimate the parameters

of and . This estimation is performed by utilizing
the property of the proposed bivariate degradation process
model. This property states that the marginal distributions of the
degradation increments are
and , and the distribu-
tion of the CDFs of the degradation increments are uni-
form distributions as and

.Given the incomplete degradation
observations , thedegradation increments for
the twodegradationprocessescanbeobtained,andfurtherused to
estimate their respective model parameters. Using the Bayesian
method, the specific procedure is mathematically formulated as

(12)
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Fig. 3. Description of the two-stage estimation method.

where the function is the
PDF of the IG distribution given in (1) with specific parameters

and .
TheMarkov chainMonte Carlomethod (MCMC) [37] is used

to generate posterior samples from the posterior distributions
presented in (12). The point estimations and interval estimations
of the model parameters are obtained by statistically summa-
rizing the generated posterior samples. For detailed information
about the Bayesian estimation of model parameters of the IG
degradation process, please refer to Peng et al. [28].
The second stage is to estimate the model parameters of

the copula function. Based on the estimation of the model
parameters for the degradation processes, the values of the
CDFs of the degradation increments can be calculated and are

and . Each pair of the CDFs,
is a sample from the copula

function . Therefore, the model
parameters of the copula function can be estimated based on
these samples. Using the Bayesian method, the estimation of

is given as

(13)

where is the density of the bivariate copula func-
tion [18], [30].
The estimation of is based on the pairs of estimated CDFs

of the degradation increments. Only the complete part of the
degradation observations presented in (11) is used. The MCMC
method is used to simulate posterior samples from the posterior
distribution presented in (13). The point estimation and interval
estimation are then summarized from the generated posterior
samples.

C. Degradation Inference and RUL Prediction
When the model parameters are estimated, two different

methods are introduced to individually implement the degra-
dation inferences for missing observation points and for future
observation points.
For the inference of missing degradation observations

, a conditional copula based
method is introduced. This method is based on the dependence
structure of the bivariate degradation process model presented
in (7). According to the properties of the copula function,
if the degradation increments are available based on
the degradation observations, the following relationship is
obtained:

(14)
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Fig. 4. Flowchart of methods for degradation inferences.

where is the conditional copula function given
[18], [30].

By incorporating the estimations of and into (14), the
conditional distribution of is obtained as

(15)

Based on the simulation of through (15), the inferences
of are obtained according to the function relationship,

, where is the in-
verse of the IG CDF given in (2). The degradation inference
of is then obtained as

(16)

The calculations of (15) and (16) are carried out using a simu-
lation based integration method. The procedure for this simula-
tion based integration method is presented in Fig. 4. The calcu-
lations are based on the posterior samples of model parameters,

with , which are generated from
the posterior distributions in (12) and (13). For each group of
posterior samples, the CDF of is calculated. The CDF
of is obtained through the conditional copula function,

as presented in (14). The degradation increment is then
obtained by calculating the inverse IG CDF, . A
sample of degradation inference for the missing observation is
obtained as . By repeating these procedures times,
a group of degradation inferences are obtained as .
Statistical summarization can then be drawn based on these
samples, which includes themean, variance, empirical PDF, em-
pirical CDF, and so on.
For degradation inferences of future observation points

, a copula func-
tion-based method is introduced, where is the number of
future observation points interested. Because neither the degra-
dation observation of nor is available, degradation
inferences of are
given as

(17)
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The calculation of (17) is implemented through a simulation-
based integration method. A pictorial description of this method
is presented in Fig. 4. Similar to the method for degradation in-
ference of missing observations, the calculations are based on
the posterior samples of model parameters .
For each group of posterior samples, a pair of is
generated from . and are ob-
tained by calculating the inverse IG CDFs, and

. A pair of degradation inferences for the future
observation is then obtained as . By repeating these
procedures times, a group of degradation inferences are ob-
tained as . By summarizing these samples of
degradation inferences, the mean, variance, and interval esti-
mation of the degradation observations at future time points are
obtained.
The estimation of reliability and the prediction of RUL are

dependent on the degradation inferences for the future points,
which have been presented in (17). Given the degradation
threshold, the reliability estimation and the RUL predication
are mathematically described as

or

(18)

where and are the degradation inferences pre-
sented in (17) for future time points , and the range of
is extended to infinity to cover the possible failure points in the
future.
Because there are no analytical forms for the reliability func-

tion and RUL distribution, a simulation based method is used
for the estimation of reliability and the prediction of RUL. A
pictorial description of the simulation based method for RUL
estimation is presented in Fig. 5.
This method is based on the posterior samples of the model

parameters generated from the posterior distributions given in
(12) and (13). For each group of posterior samples, unit-spe-
cific RULs are predicted for the products, where different prod-
ucts may have different RULs according to their respective ob-
servations at the latest observing time . The unit-specific
RULs are obtained by progressively generating degradation in-
ferences until the time point at which one of the degradation in-
ferences reaches its failure threshold. This specific point is the
failure time of the corresponding product, and the time interval
between this point and is the RUL of the product. By ob-
taining the failure times for all the groups of model parameters,
the statistics of the reliability function and the RUL can then be
obtained.

IV. SIMULATION STUDY
Here, a simulation study is presented to investigate the

effectiveness of the proposed method for dependence mod-

eling, degradation inference, and RUL prediction under
different dependence situations. Two IG processes and a
Gaussian copula function are used to generate degradation
observations. Three groups of degradation observations are
generated and presented in Fig. 1. These observations are
generated using the following parameter cases:

, and for the marginal
degradation processes; and different linear coefficients,

for the copula function to reflect the different
degrees of dependence between these two marginal degra-
dation processes. The incomplete degradation observations
are then generated by artificially removing the degradation
observations at the missing observation points, where real
values are reserved for the validation of the degradation
inferences. A group of incomplete degradation observa-
tions with are shown in Fig. 2. These artificial
missing observations include the following points:

, and .
Because the proposed model can model different dependence

situations through the copula function, the proposed method
is used directly on the generated data without checking the
strength of dependence between the degradation processes.
Following the procedures of the two-stage Bayesian estimation
method, the first stage is implemented, and the estimations of
the model parameters for the marginal degradation processes
are obtained. A pictorial description of the relative errors of
the estimated model parameters , and is presented
in Fig. 6. This figure shows the boxplots of the relative errors
with mean values displayed as dotted circles in the figure,
and the 95% confidence intervals are presented as vertical
columns. These relative errors are the ratios of the errors of the
estimated values to the real values of the model parameters. A
high-precision of model parameter estimation is demonstrated
for the proposed method through the low relative errors shown
in the figure.
Based on the estimations of the model parameters, the CDFs

of the degradation increments are obtained. Scatter plots of
the CDFs of the degradation increments are depicted in Fig. 7.
These scatter plots are qualitative descriptions of the depen-
dence between the two marginal degradation processes.
The second-stage of the two-stage method is then imple-

mented based on the CDFs of the degradation increments. The
parameter of the copula function is then estimated and is also
presented in Fig. 6 as . The accuracy of the estimation results
is demonstrated by the low relative errors of .
Based on the posterior samples of the model parameters, the

simulation based degradation inferences for the missing obser-
vation points are obtained, and are presented in Fig. 8.
A high precision of degradation inferences for the missing

degradation points is demonstrated under the proposed method,
especially for the situation with high degree of dependence be-
tween the degradation processes. This high precision is due to
themodeling of dependence through the copula function. A con-
nection is then formulated between the two degradation pro-
cesses, through which the degradation inferences of one degra-
dation process can rely on the degradation observations of the
other degradation process. To further demonstrate the effective-
ness of dependence modeling, the degradation inferences for
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Fig. 5. Pictorial description of the simulation based RUL prediction.

missing degradation observations without considering this de-
pendence are obtained, and are presented in Fig. 9. These in-
ferences are obtained using the same estimations of the model
parameters presented above, except for , to make the two
degradation processes -independent.
When the dependence between the degradation processes in-

creases, discrepancy between the real values and the inferred
values is observed under the -independent degradation process
model. This discrepancy indicates that ignorance of the depen-
dence among degradation processes can lead to poor inferences
of the missing degradation observations when there is a strong
dependence between the two degradation processes. This igno-
rance can further lead to imprecise estimations of RULs, which
rely heavily on the degradation inferences as presented in (18).
To demonstrate this point, the relative errors of the RUL predic-

tions between the proposed model and the -independent model
are compared. The comparison results are shown in Fig. 10.
Comparedwith the independentmodel, higher precision of RUL
predictions are achieved by the proposed model under the sim-
ulation case with , and , where
a strong dependence between these two degradation processes
exists.
To further demonstrate the dependence modeling in the

proposed model, comparisons of the degradation inferences for
the missing point generated by the proposed method
and the -independent model under the case with
are presented. Given the incomplete degradation observation,

, where is available and is
missing, the degradation inferences of generated by
different models are given in Fig. 11.
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Fig. 6. Relative errors of the parameter estimations obtained by the two-stage method.

Fig. 7. Scatter plots of the CDFs of the degradation increments.

Fig. 8. Relative errors of the degradation inferences for the missing observa-
tions by the proposed model.

A distribution of with smaller variance is obtained
under the proposed model compared with the -independent

model. According to (16), the distribution of is ob-
tained based on samples of through the inverse IG CDF,

. In the proposed model, a connection con-
structed by the copula function between and
can help to improve the inference precision of . Fur-
ther examination of the samples of under
the proposed model and the -independent model provides a
more detailed interpretation. Fig. 12 presents a comparison of
the samples of , and the corresponding dis-
tributions between the proposed model and the -independent
model.
For the -independent model, the samples of have

no relationship with the samples of . The
exert no inference on the sampling of . A uniform
distribution is obtained for the distribution of under the
-independent model. However, for the proposed model, the
samples of can be obtained through the relationship

given in (14), when the samples of
are available. A distribution with a smaller diffusion

of is obtained under the proposed model, which in
turn leads to the converged distribution of presented
in Fig. 11. The same effects are observed for the degradation
inferences of other missing observation points. Accordingly,
the effectiveness of the proposed method for the degradation
inferences of missing degradation observations is verified.

V. ILLUSTRATIVE EXAMPLE

Here, an application of the proposed method for the bi-
variate degradation analysis of heavy machine tools subject to
incomplete measurements is presented. To maintain the high
availability and high efficiency of heavy machine tools, PM and
SHM are implemented. The positioning accuracy and output
power are two indispensable performance indicators for the
PM and degradation analysis. Measurements of the positioning
accuracy are performed by programmed procedures, where
groups of continually updating observations are observed. How-
ever, measurements of the output power are missing at some
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Fig. 9. Relative errors of the degradation inferences for the missing observations by the -independent model.

Fig. 10. Comparison of the relative errors of the RUL predictions between the
proposed model and the -independent model.

observation points due to interruptions caused by changing of
the manufacturing schedules or unavailability of the measuring
system operators, leading to incomplete observations for the
degradation analysis. In addition, historical information and
experts' experience have indicated that these two performance
indicators are correlated. As a result, the degradation processes
of the positioning accuracy and output power are characterized
as bivariate -dependent degradation processes with incomplete
degradation observations. A suitable degradation modeling
and a precise degradation analysis of these two degradation
processes are critical for the operation and management of
heavy machine tools.

A. Incomplete Degradation Observations

The degradation observations of the positioning accuracy
and output power of three heavy machine tools are given in
Table I and are presented in Fig. 13. The degradation measure-
ment of the positioning accuracy is available at each
observation point . However, the degradation measurements
of the output power are missing at some observation

Fig. 11. Comparison of the distributions of between the proposed
model and the -independent model.

points, which are indicated in Table I. According to the perfor-
mance requirements of the heavy machine tools, the thresholds
for the degradations of the positioning accuracy and output
power are and . Due to proprietary issues,
the units of the performance indicators are omitted, and the
degradation observations are modified to some degree. Largely,
however, the characteristics of bivariate -dependent degrada-
tion processes with incomplete degradation observations are
reserved for demonstration of the proposed method.

B. Degradation Modeling and Parameter Estimation
The multivariate IG process model introduced above is used

to model the degradation observations presented in Table I.
This choice is due to the fact that the degradation observa-
tions are characterized as monotone increasing degradation
processes with either non-linear or linear degradation paths, as
presented in Fig. 13. In addition, some dependence among these
two degradation processes has been suggested by historical
information and experts' experience. The IG process model can
describe these characteristics by incorporating different forms
of degradation mean functions. In detail, a linear degradation
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Fig. 12. Comparison of samples and the distribution of between the proposed model and the -independent model.

TABLE I
DEGRADATION MEASUREMENTS OF THE POSITIONING ACCURACY AND OUTPUT POWER OF

THREE HEAVY MACHINE TOOLS AT OBSERVATION TIME POINTS

mean function is chosen for the degradation process of the po-
sitioning accuracy, and a power-law degradation mean function
is chosen for the degradation process of the output power. The
bivariate IG process model is then given as

(19)

where the copula function is not specified because the charac-
teristic of dependence is not identified clearly at this moment.
According to the two-stage parameter estimation method pre-

sented in Section III, the model parameters,
and , for and are estimated using
the Bayesian method based on the degradation observations pre-
sented in Table I. Noninformative priors of the model param-
eters are used in the Bayesian estimation, which are given as

uniform distributions within large intervals. Based on (12), the
posterior distributions of model parameters are

(20)
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Fig. 13. Degradation observations of the positioning accuracy and output power of three heavy machine tools.

TABLE II
ESTIMATIONS OF THE MODEL PARAMETERS AND THE PRIORS USED IN THE BAYESIAN ESTIMATION

where and is the number of degrada-
tion observations of the output power for the th heavy machine
tool, as contained in .
Posterior samples of the model parameters are generated

from the joint posterior distribution presented in (20) using the
MCMC method. Statistical summarizations of these posterior
samples are presented in Table II; the prior distributions used
in the Bayesian estimation are also provided.
Based on the estimations of the model parameters,

the CDFs of the degradation increments, and
, are obtained. According to the bivariate degra-

dation model presented in (19), a pictorial description
of the relationship between the degradation increments,

with and is
presented in Fig. 14.
A strong dependence is observed from Fig. 14. The

Gaussian copula function is chosen to characterize the ap-
parent lower-lower and upper-upper tail dependence depicted

Fig. 14. Scatter plot of the CDFs of the degradation increments of the posi-
tioning accuracy and output power.
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TABLE III
ESTIMATIONS OF THE MODEL PARAMETER

in Fig. 14. Accordingly, the copula function of the bivariate
degradation process model presented in (19) is specified as

(21)

Following the two-stage parameter estimation method, the
model parameter is estimated based on the CDFs of
the degradation increments presented in Fig. 14. A uniform dis-
tribution, , within the bound of is used as the
non-informative prior distribution. The posterior distribution of
is then given as

(22)

Similarly, the MCMC method is used to generate posterior
samples of from the posterior distribution. Statistical summa-
rizations of the posterior samples are presented in Table III.

C. Degradation Inference and RUL Prediction
Based on the posterior samples of

, and , degradation inferences of
the missing observations are obtained following the procedure
described in Section III. In detail, the degradation increments
of the positioning accuracy, including

, and , are used to infer their counter-
part degradation increments of the output power through the
Gaussian copula function. Given the CDFs of the degradation
increments of the positioning accuracy, the corresponding
CDFs of the degradation increments of the output power
are obtained, which include

, and . A pictorial description
of the inferred CDFs of the degradation increments of output
power, and the observed CDFs of the degradation increments
of positioning accuracy is presented in Fig. 15.
Utilizing the inferred CDFs of the degradation increments

of the output power, the degradation inferences of the missing
degradation observations are obtained through (16). Because
the degradation inferences are obtained based on posterior sam-
ples of the model parameters, groups of posterior inferences
of missing degradation observations are obtained. Summariza-

Fig. 15. Scatter plot of the CDFs of the degradation increments of the posi-
tioning accuracy and output power.

Fig. 16. Boxplot of the degradation inferences for the missing observations and
the cross-validation observation.

TABLE IV
INFERENCES OF THE MISSING DEGRADATION OBSERVATIONS AND THE

CROSS-VALIDATION OBSERVATION OF THE OUTPUT POWER

tions and boxplots of these posterior inferences are given in
Table IV and Fig. 16.
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Fig. 17. Probability densities and boxplot of the RULs for the heavy machine
tools.

To validate the capability of degradation inference, the
observed degradation observation, is used as the
leave-one out cross-validation point. The observed value of

is 74.99. The inference of is summarized
in Table IV. A relative error of 3.5774% is observed for the
cross-validation degradation observation, which indicates that
the precision of the degradation inferences for the missing
observations is acceptable.
The posterior samples of the model parameters, and the

degradation inferences of the missing degradation observations
are further used to infer the degradations at future observa-
tion points. Following the procedure presented in Section III,
degradation increments of the positioning accuracy and output
power are generated through the Gaussian copula function and
the marginal IG distributions. By comparing the degradation
inferences for future observation points with the degradation
thresholds of the two degradation processes, the RULs of the
heavy machine tools are obtained, and are presented in Fig. 17.
Operation and management of the heavy machine tools can
then be performed based on the inferences of the missing output
power and the predicted RULs of the heavy machine tools.

VI. CONCLUSION
This paper presents a coherent bivariate degradation analysis

with incomplete degradation observations. A new type of bi-
variate degradation process model is introduced based on in-
verse Gaussian processes and copula functions. A two-stage
Bayesian estimation method is introduced to facilitate the pa-
rameter estimation with incomplete or complete degradation
observations. Degradation inferences for missing observations
and future observations are developed separately. The capa-
bility of the proposed method for degradation inference is ver-
ified through a simulation study. An illustrative example char-
acterized as bivariate -dependent degradation processes with
incomplete degradation observations is presented to illustrate
the proposed method. The proposed model can model various
types of performance indicators, in addition to the indicators
with linear degradation paths. Moreover, the proposed method
for degradation inference has the merit of leveraging the pa-
rameter estimations of the marginal degradation processes, and

the analytical dependence relationship provided by conditional
copula functions. Both of these advantages can facilitate the
degradation inferences, reliability estimation, and RUL predic-
tion, which are critical for the decision making for the preven-
tive maintenance and system health management of complex
systems.
It is worth mentioning that the proposed method can be ex-

tended to the situation of multivariate degradation processes by
properly substituting the bivariate copula with a multivariate
copula. In addition, a prerequisite for the degradation inference
of a missing degradation observation is that at least one degrada-
tion process is observed at this particular observation point. Our
future work will focus on model comparisons among various
types of bivariate degradation process models. The selection of
marginal degradation processes and copula functions is also of
interest. Another possible research will focus on degradation
test planning with the proposed bivariate degradation process
models considering the inherent unit-to-unit variability, the ex-
ternal measurement error, and the measurement intervals.
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