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a b s t r a c t 

Phased mission systems (PMSs) have wide applications in engineering practices, especially in aerospace industry 

such as man-made satellite and spacecraft. To achieve high reliability in a PMS, certain critical parts in the 

system are designed to have a redundant architecture, such as cold standby (structural or functional). State- 

space models such as Markov processes have been widely used in previous studies to evaluate the reliabilities 

of these systems. But in practice, many real systems consist of mechanical components or mechatronics whose 

lifetime follow non-exponential distributions like the Weibull distribution. In this type of system, the Markov 

process is not capable of modeling the system behavior. In this paper, the SMP (Semi-Markov Process) is applied 

to solve the problem that the components ’ lifetime in dynamic systems follows non-exponential distributions. 

An approximation algorithm for the SMP is proposed to assess the reliability of the PMSs consisting of non- 

exponential components. Furthermore, the accuracy and calculation efficiency of the approximation algorithm 

are explored. At last, the reliability assessment of a complex multi-phased altitude and orbit control system 

(AOCS) in a man-made satellite is presented to illustrate the method. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

A phased mission system (PMS) is defined as a system subject to mul-

iple, consecutive, non-overlapping operation phases [1] . During each

hase, a PMS needs to accomplish a specified task. In these phases,

he system may be subject to different working conditions and environ-

ental stresses, as well as different performance requirements. Take a

anned spacecraft as an example —one flight of the spacecraft involves

ifting off, on-orbit operation, leaving orbit, and landing phases. In each

hase, the spacecraft needs to accomplish a specific mission and work

nder specific working conditions (lifting off phase and landing phases

n endo-atmosphere, on-orbit and leave orbit in the outer space). So in

ifferent phases, the system configurations, and the components ’ fail-

re rates and even failure criteria could be vastly different. So distinct

odels for different phases are necessary to model and analyze the PMS

ccurately. To analyze the reliability throughout the whole lifetime of

he PMS, the s-dependency across the multiple phases should be con-

idered. For instance, in a non-repairable PMS, once a component fails

n an early phase, it will remain in a down state in subsequent phases

2,3] . The consideration of such dependency raises grand challenges to

he existing single-phase reliability modeling method [4] . 
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The reliability of a PMS is defined as the probability that the sys-

em achieves all the mission objectives successfully in all phases. Over

he past decades, researchers have proposed a number of PMS reliabil-

ty analysis models. These modeling models could be divided into two

ajor categories: 

(1) State space models based on stochastic processes [5,6] , such as

continuous-time Markov chain (CTMC) based models and Petri-

net based models. The main idea of the CTMC based modeling

method is to construct a Markov chain for each phase to repre-

sent the system behavior of the PMS. The dependency among

components like cold standby can be modeled by a Markov

model. However, the Markov model may suffer from the state

explosion problem when the number of the system states grows

large. 

(2) Combinatorial models [1,7] , such as BDD and MDD based mod-

els. The fundamental assumption of the combinatorial models is

that all the components are independent of each other, which

means there is no dependency existing within one phase. But the

dependency among phases still need to be accounted for. The key

to adopt the BDD to a multi-phase system is the phase algebra.

Detailed information about the phase algebra can be found in [2] .

https://doi.org/10.1016/j.ress.2018.03.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2018.03.008&domain=pdf
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Acronyms 

AOCS altitude and orbit control system 

BDD binary decision diagram 

CDF cumulative distribution function 

CSP cold spare 

CTMC continuous time Markov chains 

MCS Monte Carlo Simulation 

MDD multi-valued decision diagram 

MFT modularized fault tree 

PDO phase-dependent operation 

PMS phased mission system 

PMS–BDD a BDD-based PMS approach 

SMP semi-Markov process 

Notation 

Q ( t ) the kernel matrix of SMP at time t 

𝜽( t ) the transition probability matrix of SMP at time t 

Q i, j ( t ) the state transition probability from state i to state j at 

time interval [0, t ] 

𝜃i, j ( t ) the probability that SMP starts in state i at 𝑡 = 0 and ends 

in state j at time t 

K the amount of states of the SMP 

F i ( t ) the CDF of lifetime of component i 

G i ( t ) the CDF of repair time of component i 

𝛼, 𝛽 shape parameter and scale parameter of the Weibull dis- 

tribution 

L the amount of segments 

𝛿 the discretization interval length 

M i, j the i th module in phase j 

T i the phase duration of phase i 

𝐹 𝑀 𝑖 
( 𝑡 ) the CDF of module i at time t 

𝐹 𝑀 𝑖 ,𝑗 
( 𝑡 ) the CDF of module i at time t of phase j 

w, f, s representing state of the components in working, failure 

and standby separately. 

R sys system reliability 

Si Mj state i of module j 

T w the whole lifetime of the phased AOCS 

Though the above two types of models can be used to address the

hallenges in PMS reliability modeling and assessment, they both have

ome serious limitations. The state space models cannot be used in large-

cale systems due to the exponential growth of the state number. On

he other hand, combinatorial models can deal with the large-scale sys-

em problems but cannot effectively analyze the dynamic behaviors of

omplex systems. To make use of the advantages of these two methods,

 modularization method [3] combining PMS–BDD and Markov pro-

ess has been proposed. Based on the fault tree modularized method,

ll components can be classified into two categories: independent static

odules and dynamic modules. The static modules are assessed effi-

iently using PMS–BDD method, and the dynamic modules are assessed

ased on the Markov method. This hybrid approach possesses the advan-

ages of both methods, namely computational efficiency and effective

ynamic behavior representation. 

As is well known, many real-world systems, particularly those

erospace equipment like manmade satellite, are designed with cold-

tandby redundancy for achieving fault tolerance and high reliability

8–12] . On the other hand, due to the weight restriction and travelling

n the outer space, only a few components in the satellite can be repaired

y limited maintenance resources. To evaluate reliability of this type

f system, the use of a state space model is necessary. In a traditional

arkov chain, the sojourn time among states follows the exponential

istribution [13–16] . But many real-world systems like the satellite con-

ist of mechanical or electromechanical components whose lifetime and

epair time are very likely to follow non-exponential distributions such
120 
s Weibull distribution. With the non-exponential lifetime distributions

17] , the system cannot be modeled by the traditional Markov process.

owever, semi-Markov process [18] , belonging to non-Markovain fam-

ly, can deal with the non-exponential transition times [18–20] . There-

ore, the semi-Markov process (SMP), in conjunction with the modu-

arization method and PMS–BDD models, is adopted in this paper to

valuate the reliability of the complex PMS. 

The main contribution of this paper is the development of a semi-

arkov based model for reliability evaluation of complex phased mis-

ion systems consisting of partially repairable non-exponential compo-

ents. Meanwhile, through combining the SMP and the modulariza-

ion method, the system reliability can be assessed with fewer states

han only using the SMP. To mitigate the calculation complexity and

mprove the computational efficiency, an approximation method (the

rapezoidal integration rule) is used to compute the complex integrals.

he accuracy and calculation efficiency of this approximation method

re carefully examined. 

The rest of this paper is organized as follows. Section 2 introduces the

asics of semi-Markov process (SMP) and the approximation method. In

ection 3 , the accuracy and the calculation efficiency of the approxima-

ion method are explored in detail. Section 4 presents in detail a practical

ystem, the altitude and orbit control system of a satellite, and its multi-

hased and dynamic behaviors. Furthermore, the modular method is

pplied to simplify the system FT model. In Section 5 , the SMP as well

s the approximation method is applied to evaluate the reliability in-

ices of dynamic modules and the mini-component method is applied

o evaluate the reliability indices of static modules. By combining the

eliability indices of dynamic modules and static modules, the reliabil-

ty of the multi-phased AOCS can be assessed by the PMS–BDD model.

 conclusion of this paper along with a summary of our future works is

resented in Section 6 . 

. Approximation method for SMP 

.1. Basic conception of semi-Markov process 

Although CTMC possesses many desirable characteristics and is

idely used in reliability modeling, the transition time needs to fol-

ow the exponential distribution, which limits its applications in reality,

specially in systems consisting of non-exponential components. In a

emi-Markov process (SMP), the state transition time can be any kinds

f distributions which is critical to solving this type of problem. SMP

s a generalization of the classical Markov chains as it accommodates

rbitrary sojourn time distributions. Generally, SMP does not have the

arkov property, except for transition time points. These time points are

he Markov regeneration epochs, and the SMP only changes the states

t these epochs. That is why it is called a semi-Markov process [20] . 

To define the transient behaviors of a SMP, the initial system state

robability vector P ( t ) at time 𝑡 = 0 and the kernel matrix Q ( t ) in which

lement Q i, j ( t ) denotes the probability that the SMP transitions from

tate i to state j during the time interval [0, t ]. The kernel matrix Q ( t )

an be obtained by the cumulative distribution function (CDF) of sojourn

ime between states and the competition behaviors among transitions. 

The main task in using the SMP for reliability assessment is to evalu-

te the system state probabilities at any time t . Let 𝜽( t ) represent the

ransition probability matrix in which 𝜃𝑖,𝑗 ( 𝑡 ) , 𝑖, 𝑗 = { 1 , 2 , ⋯ , 𝐾 } repre-

ents the probability that the process start from state i to state j at time

nterval [0, t ]. According to [18] , the state probabilities 𝜃𝑖,𝑗 ( 𝑡 ) , 𝑖, 𝑗 =
 1 , 2 , ⋯ , 𝐾 } can be derived by solve the integrals given below, 

𝑖,𝑗 ( 𝑡 ) = 𝜎𝑖,𝑗 
(
1 − 𝐹 𝑖 ( 𝑡 ) 

)
+ 

𝐾 ∑
𝑘 =1 

∫
𝑡 

0 
𝑞 𝑖,𝑘 ( 𝜏) 𝜃𝑘,𝑗 ( 𝑡 − 𝜏) 𝑑𝜏 (1)

here, 𝑞 𝑖,𝑘 ( 𝑡 ) = 

𝑑 𝑄 𝑖,𝑘 ( 𝑡 ) 
𝑑𝑡 

, 𝐹 𝑖 ( 𝑡 ) = 

∑𝐾 

𝑗=1 𝑄 𝑖,𝑗 ( 𝑡 ) , 𝜎𝑖,𝑗 = { 1 , 𝑖𝑓 𝑖 = 𝑗 

0 , 𝑖𝑓 𝑖 ≠ 𝑗 

It can be observed that the first part of Eq. (1) is the probability that

he system stays in state i at time interval [0, t ] and the second part of
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Fig. 1. State transition graph of the numerical example. 
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b

he equation represents the probability that system transits from state i

o state j at time interval [0, t ]. 

By integrating the calculated 𝜃i, j ( t ) and the given initial system state

robabilities, the system state probabilities at time t can be assessed.

ith the system state probabilities at any time t , all the system reliability

ndices can be evaluated easily. 

.2. Approximation method for semi-Markov process 

Although SMP can deal with the situation that state transition times

ollow non-exponential distributions, it is not widely used in reliability

ngineering. One important reason is that the integrals in Eq. (1) cannot

e solved analytically under non-exponential distributions (e.g. Weibull

istribution). In this paper, an approximation method based on Trape-

oidal integral law is proposed to provide an approximate solution of

he complex integrals in SMP. Trapezoidal integral law is a numerical

ethod to compute the complex integral functions with approximate

olutions. 

To introduce the approximation method, a system with one work-

ng (A) and one cold standby (B) components is applied in this section.

omponent A can be repaired. Assume that component B will work im-

ediately after the failure of Component A and the switchover time

s negligible. F A ( t ) and F B ( t ) represent the CDFs of components ’ life-

ime and G A ( t ) represent the CDF of the repair time of component A.

 A ( t ), F B ( t ) and G A ( t ) follow the two parameter Weibull distributions

 𝐹 ( 𝑡 ) = 1 − 𝑒 − ( 𝑡 ∕ 𝛽) 
𝛼
) with different parameters. The state transition graph

s shown in Fig. 1 and only the state 4 is the failure state. 

In Fig. 1 , w, s and f respectively denotes a component staying at

orking, standby and failure states and F i, j ( t ) represent the CDF of the

ystem transits from state i to state j . And the state transition behaviors

an be described as, 

• S 1 → S 2 : component A fails and the cold spare component B start to

work; 
• S 2 → S 3 : the repair of component A has completed before component

B fails and component A starts to work after component B fails; 
• S 2 → S 4 : the repair of component A has not completed before com-

ponent B fails, and the system fails; 
• S 3 → S 4 : component A fails again after repaired, and the system fails.

According to the definition of the semi-Markov process [18] , the sys-

em state probabilities of this MSS can be calculated by the semi-Markov

odel by four steps as follows. 

Step 1: Ascertain the structure of the kernel matrix Q ( t ) and transi-

ion probability 𝜽( t ) by the state-space diagram. According to the state

ransition behavior in Fig. 1 , the kernel matrix Q ( t ) and state transition

robability matrix 𝜽( t ) can be ascertained as, 

 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 𝑄 1 , 2 ( 𝑡 ) 0 0 
0 0 𝑄 2 , 3 ( 𝑡 ) 𝑄 2 , 4 ( 𝑡 ) 
0 0 0 𝑄 3 , 4 ( 𝑡 ) 
0 0 0 0 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

121 
( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜃1 , 1 ( 𝑡 ) 𝜃1 , 2 ( 𝑡 ) 𝜃1 , 3 ( 𝑡 ) 𝜃1 , 4 ( 𝑡 ) 
0 𝜃2 , 2 ( 𝑡 ) 𝜃2 , 3 ( 𝑡 ) 𝜃2 , 4 ( 𝑡 ) 
0 0 𝜃3 , 3 ( 𝑡 ) 𝜃3 , 4 ( 𝑡 ) 
0 0 0 𝜃4 , 4 ( 𝑡 ) 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(2) 

Step 2: Evaluate the kernel matrix Q ( t ). Q i, j ( t ) represents the proba-

ility that the system transits from state i to state j during time interval

0, t ] with one step, like the one step transition probability in the Markov

hain. For example, Q 2, 3 ( t ) denotes the component B fails before the

epair of component A is completed and Q 2, 4 ( t ) denotes component B

ails after the repair of component A has completed, and they can be

omputed as, 

 2 , 3 ( 𝑡 ) = Pr 
{(

𝐹 𝑡 𝐵 ≤ 𝑡 
)
&
(
𝑅 𝑡 𝐴 < 𝐹 𝑡 𝐵 

)}
= ∫

𝑡 

0 
𝐺 𝐴 ( 𝑢 ) 𝑑 𝐹 𝐵 ( 𝑢 ) 

 2 , 4 ( 𝑡 ) = Pr 
{(

𝐹 𝑡 𝐵 ≤ 𝑡 
)
&
(
𝑅 𝑡 𝐴 > 𝐹 𝑡 𝐵 

)}
= ∫

𝑡 

0 

(
1 − 𝐺 𝐴 ( 𝑢 ) 

)
𝑑 𝐹 𝐵 ( 𝑢 ) (3) 

here Ft and Rt represent the specific failure and repair time, respec-

ively . 

And the q 2, 3 ( t ) and q 2, 4 ( t ) are, 

 2 , 3 ( 𝑡 ) = 

𝑑 𝑄 2 , 3 ( 𝑡 ) 
𝑑𝑡 

= 𝐺 𝐴 ( 𝑡 ) 𝑓 𝐵 ( 𝑡 ) 

 2 , 4 ( 𝑡 ) = 

𝑑 𝑄 2 , 4 ( 𝑡 ) 
𝑑𝑡 

= 

(
1 − 𝐺 𝐴 ( 𝑡 ) 

)
𝑓 𝐵 ( 𝑡 ) (4) 

The rest of the elements in Q ( t ) can be calculated according the state

ransition behaviors, shown as, 

 ( 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 𝐹 𝐴 ( 𝑡 ) 0 0 
0 0 ∫ 𝑡 

0 𝐺 𝐴 ( 𝑢 ) 𝑑 𝐹 𝐵 ( 𝑢 ) ∫ 𝑡 

0 
(
1 − 𝐺 𝐴 ( 𝑢 ) 

)
𝑑 𝐹 𝐵 ( 𝑢 ) 

0 0 0 𝐹 𝐴 ( 𝑡 ) 
0 0 0 0 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(5) 

Step 3: Evaluate the state probability matrix 𝜽( t ) using Eq. (1) and

he Trapezoidal integral law. 

First, we can obtain the integral equations by Eq. (1) and the kernel

atrix Q ( t ), shown as, 

 

 

 

 

 

 

 

𝜃1 , 1 ( 𝑡 ) = 1 − 𝑄 1 , 2 ( 𝑡 ) 𝜃2 , 2 ( 𝑡 ) = 1 − 𝑄 2 , 3 ( 𝑡 ) − 𝑄 2 , 4 ( 𝑡 ) 
𝜃1 , 2 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 1 , 2 ( 𝜏) 𝜃2 , 2 ( 𝑡 − 𝜏) 𝑑𝜏 𝜃2 , 3 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 2 , 3 ( 𝜏) 𝜃3 , 3 ( 𝑡 − 𝜏) 𝑑𝜏
𝜃1 , 3 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 1 , 2 ( 𝜏) 𝜃2 , 3 ( 𝑡 − 𝜏) 𝑑𝜏 𝜃2 , 4 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 2 , 3 ( 𝜏) 𝜃3 , 4 ( 𝑡 − 𝜏) 𝑑𝜏
𝜃1 , 4 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 1 , 2 ( 𝜏) 𝜃2 , 4 ( 𝑡 − 𝜏) 𝑑𝜏 + ∫ 𝑡 

0 𝑞 2 , 4 ( 𝜏) 𝜃4 , 4 ( 𝑡 − 𝜏) 𝑑𝜏
𝜃3 , 3 ( 𝑡 ) = 1 − 𝑄 3 , 4 ( 𝑡 ) 𝜃3 , 4 ( 𝑡 ) = ∫ 𝑡 

0 𝑞 3 , 4 ( 𝜏) 𝜃4 , 4 ( 𝑡 − 𝜏) 𝑑𝜏

(6) 

Second, the integrals in Eq. (6) are assessed by the two point trape-

oidal rule [21] , using 𝜃1,2 ( t ) as an example, shown as follows, 

1 , 2 ( 𝑡 ) = ∫
𝑡 

0 
𝑞 1 , 2 ( 𝜏) 𝜃2 , 2 ( 𝑡 − 𝜏) 𝑑𝜏

≈
𝐿 ∑

𝑘 =1 

1 
2 
[
𝑞 1 , 2 

(
𝜏𝑘 
)
𝜃2 , 2 

(
𝑡 − 𝜏𝑘 

)
+ 𝑞 1 , 2 

(
𝜏𝑘 +1 

)
𝜃2 , 2 

(
𝑡 − 𝜏𝑘 +1 

)]
·
(
𝜏𝑘 +1 − 𝜏𝑘 

)
(7) 

here [0, t ] is divided into L equal segments of equal length and the

iscretization interval length is 𝛿 = 𝑡 ∕ 𝐿 and 𝜏1 = 0 , 𝜏𝐿 +1 = 𝑡 . 

Generally speaking, the smaller 𝛿 is, the more accurate result is. With

q. (7) , the integrals in Eq. (6) can be evaluated with an approximation

olution. 

Step 4: Based on the probability 𝜃i, j ( t ) at certain time t and the initial

tate vector P (0), the system state probabilities at time t , P ( t ), can be

valuated as, 

 ( 𝑡 ) = 𝑷 ( 0 ) 𝜽( 𝑡 ) (8) 

With the system state probability P ( t ) at any time t > 0, all the relia-

ility indices of this multi-state system can be computed easily. 
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Table 1 

Parameters for the MSS in non- 

Markovian environment. 

F A ( t ) F B ( t ) G A ( t ) 

𝛼 2 1.5 1.5 

𝛽 10 10 20 

Fig. 2. The Monte Carlo simulation procedure for the numerical example. 
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. Accuracy validation of the approximation method 

In the previous section, an approximation method is proposed to as-

ess the SMP and be able to provide an approximation solution [22,23] .

n this section, the accuracy of the approximation method is studied by

omparing the results on the example shown in Fig. 1 by the Monte

arlo simulation method and the approximation method. Furthermore,

he calculation efficiency of the approximation method is also investi-

ated. 

The parameters of the Weibull distributions are shown in Table 1 .

is the shape parameter and 𝛽 is the scale parameter. The initial state

robabilities are 𝑷 (0) =( 𝑝 1 (0) = 1 , 𝑝 2 (0) = 𝑝 3 (0) = 𝑝 4 (0) = 0) . 
With known transition time distributions and the approximate

ethod shown in Section 2 , the system reliability can be evaluated with

he discretization interval length 𝛿 = 0 . 1 . And the calculation time is

nly 0.22 s. 

To demonstrate the accuracy of the result assessed by the approxi-

ation method. A Monte Carlo simulation (MCS) method is applied in

his part. MCS is based on repeated sampling of realizations of system

onfigurations. By statistically analyzing simulated data, the reliability

ndices, such as the system reliability, can be assessed. All the data sim-

lated represent the seldom of failure, so with more realizations (more

imulated failure data), the analysis result will be more accurate [22] .

he simulation procedure for the numerical example is shown in Fig. 2 .

In Fig. 2 , T i, j represents the simulated time that the system transit

rom state i to state j and Ts ( j, i ) represent the recorded time that system

tays in state i in the j th simulation. With the simulation procedure,

he comparison of the system state probabilities by the approximation

ethod and MC simulation (simulation amount 𝑁 max = 2 × 10 5 ) method

re shown in Fig. 3 . 

To show the calculation efficiency and accuracy of the approxima-

ion method, different amount of data are used to evaluate the reliability

f the numerical example. First, N 1 ( 𝑁 1 = 500 ) failure time data are gen-

rated by using the MCS method. The comparison between the approx-
122 
mation method and MC simulation method is shown in Fig. 4 (a) with

 1 = 500 and the errors are obvious. As mentioned above, the result by

he MCS method is more accurate with more data. So the amount of sim-

lation data is increased to 𝑁 2 = 5 × 10 3 , 𝑁 3 = 5 × 10 4 , 𝑁 4 = 5 × 10 5 and

 5 = 5 × 10 6 , respectively. With the simulation amount 𝑁 2 = 5 × 10 5 ,
he comparison is shown in Fig. 4 (b) and the errors decrease obviously.

he max errors and the mean errors of the system reliability under dif-

erent data amount are shown in Table 2 as well. 

As is well known, with the increase of the realization amount, the

imulation result gets closer to the true value, and from Table 2 , we

an see that the max error and mean error between the two methods

et smaller. The results illustrate that the approximation method can

rovide a relatively accurate solution. On the other hand, from the cal-

ulation times shown in Table 2 , if we want to get a highly accurate

olution by the MCS method, the calculation time will be much longer

ompared to the approximation method. 

. Multi-phased AOCS in manmade satellite 

.1. The AOCS in the manmade satellite 

In this section, the altitude and orbit control system (AOCS), a critical

ubsystem of the manmade satellite, is introduced as a practical example

o illustrate the reliability modeling process of phased mission system.

he AOCS in a satellite is used to control and adjust the orbit and altitude

n the whole lifetime. 

The AOCS has three subsystems: the control subsystem (AOCC, alti-

ude and orbit control computer), the sensor subsystem (including sun

ensor, earth sensor, star track sensor and gyro assembly) and the actu-

tor subsystem (thrusters and momentum wheels). 

The AOCS can be regarded as feed-back system with three steps

hown in Fig. 5 . In the first step, the sensor subsystem acquires and

ollects the position and altitude data. In the second step, the position

nd altitude data is transited to and analyzed by the control subsystem.

n the third step, according to the analyzed result, the control subsys-

em will send orders to the actuator system to adjust the position and

ltitude. Then comes next measurement and adjustment procedure. The

epeating of this procedure keep the manned satellite in the right alti-

ude and orbit in the whole lifetime. 

According to different tasks to be completed in different phases, the

hole lifetime of the AOCS can be divided into three phases —launching

hase, orbit transfer phase and orbital operation phase. In each phase,

he system will execute different tasks in conjunction with other subsys-

ems in the satellite. 

The control subsystem consists of two components, computer A and

old standby computer B. Computer A can be repaired by backup com-

onents. The sensor subsystems consists of four components: sun sensor

C), earth sensor (D), star track sensor (E) and gyro assembly (F). Only

art of these sensors work in one specific phase. For example, the sun

ensor and the earth sensor work in phase 1 and the earth sensor, the

tar track sensor and the gyro assembly work in phase 2. The actua-

or subsystem consists of two parts: thrusters and momentum wheels

hich will work as actuators in different phases. There are two types

f thrusters: two 15 N thrusters in cold standby (H, I, used for slightly

djustment during orbit transfer) and one 620 N thruster (G, the major

ower source for orbit transfer and adjustment). The momentum wheels

J, K and L) are designed as a 2-out-of-3 system and they work in phase

. The FT models for the 3 phases are shown in Fig. 6 . 

.2. System modularization of the AOCS 

From the description in last section, the FT models will be too com-

licated to solve if the state space model is directly used. To address this

roblem, a modularization method defined in [24] and used in [3] is

pplied to deal with the cold standby behaviors. A phase module of a

ulti-phased system must meet two conditions: (1) A module is a set of
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Fig. 3. State probabilities of the numerical example by approximation and simulation approaches. 

Fig. 4. The comparison between the MCS and approximation method under different data amount. 

Table 2 

The errors between the simulation method and approximation method. 

Simulation data amount 5 ×10 2 5 ×10 3 5 ×10 4 5 ×10 5 5 ×10 6 

Max error 4 . 96 × 10 −2 1 . 98 × 10 −2 4 . 37 × 10 −3 2 . 75 × 10 −3 4 . 49 × 10 −4 

Mean error 1 . 10 × 10 −2 4 . 27 × 10 −3 1 . 04 × 10 −3 8 . 16 × 10 −4 2 . 66 × 10 −4 

Calculation time(s) 0.69 5.37 60.59 773.44 6062.06 

Fig. 5. The working process of AOCS of satellites. 
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Fig. 6. The FT model for three phases of the AOCS. 
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asic events, which means a module must be a subset of all basic events;

2) For each phase, the basic events in the collection form an indepen-

ent sub-tree in the fault tree [3] . In another word, different sub-trees in

ne phase should be independent on each other. After modularization,

he modularized fault tree consists of the independent sub-trees (mod-

les), and as a result, the complicated PMS can be assessed easily by the

MS–BDD method and module reliabilities. 

Four steps are involved in the reliability assessment of the PMS by the

odularization method and PMS–BDD method. These steps are detailed

s follows. 

tep 1: Divide the fault trees of the three phases into several indepen-

dent subtrees by the modularization method [24] . According to

their own characteristics, the subtrees (modules) can be divided

into static modules and dynamic modules. A module is a static

module if it contains only static logic gates ( and, or, k-out-of-

n ). If there are dynamic logic gates, such as the cold spare, the

module is a dynamic module [16] . 

tep 2: After modularization, the modules can be treated as the bottom

events of the modularized fault trees (MFT). In the MFT, the

modules are independent of each other. 

tep 3: According to the characteristics of the modules, the reliability

indices of dynamic and static modules can be assessed by SMP

as well as the approximation method and the mini-component

method, respectively. 

tep 4: Integrating the results of Step 2 and Step 3, the system reliability

can be assessed by using the PMS–BDD method. 

There are twelve basic events { A, B, C, D, E, F, G, H, I, J, K, L } in

his PMS. All the components can be divided into several modules in

he three phases. And the relationship between independent modules

nd basic events in three phases are shown as, 

1 = 

{
𝑀 1 , 1 = ( 𝐴, 𝐵 ) , 𝑀 2 , 1 = ( 𝐶, 𝐷 ) , 𝑀 4 , 1 = ( 𝐻, 𝐼 ) 

}
(9)

2 = 

{
𝑀 1 , 2 = ( 𝐴, 𝐵 ) , 𝑀 2 , 2 = ( 𝐷, 𝐸, 𝐹 ) , 𝑀 3 , 2 = 𝐺, 𝑀 4 , 2 = ( 𝐻, 𝐼 ) 

}
(10)

3 = 

{
𝑀 1 , 3 = ( 𝐴, 𝐵 ) , 𝑀 2 , 3 = ( 𝐸, 𝐹 ) , 𝑀 3 , 3 = 𝐺, 𝑀 5 , 3 = ( 𝐽 , 𝐾, 𝐿 ) 

}
(11)

𝑖 , 𝑖 = 1 , 2 , 3 represents the set of components working in phase i. M i, j

epresents the i th module in phase j . 

Because some modules (e.g., M 2, 2 ) are not consistent across phases,

he module across phases need to be formed. With the set theory, the

odules across phases can be obtained and shown as [3] , 

𝑀 1 = ( 𝐴, 𝐵 ) , 𝑀 2 = ( 𝐶, 𝐷, 𝐸, 𝐹 ) , 𝑀 3 = 𝐺, 𝑀 4 = ( 𝐻, 𝐼 ) , 𝑀5 = { 𝐽 , 𝐾, 𝐿 } 
}

(12)
124 
After the system modularization, all the basic events of the original

T model are divided into five independent modules. All the modules

an be treated as basic events in the MFT model, shown as Fig. 7 . 

. Reliability assessment of the AOCS 

In this section, the evalution procedure of the AOCS reliability by

he approximation method is shown in detail. In the last section, the

T models of the AOCS has been simplified into the MFT model. The

MP and the mini-components method are used to evaluate the dynamic

nd static module reliabilities in each phase separately. Since all the

odules in the MFT are mutually independent, the system reliability

an be evaluated based on the module reliabilities by the PMS–BDD

ethod. 

At first, all the modules are divided into three categories: From the

escriptions in Section 4.1 , modules 3 and 5 are static modules. The

ystem structure of module 1 and module 4 do not change in differ-

nt phases. And the system structure of module 2 changes in different

hases, which needs specially designed methods to be dealt with. All

he components are characterized by Weibull distributions. The param-

ters of all the components are listed in Table 3 . The phase durations

re 𝑇 1 = 48 , 𝑇 2 = 252 and 𝑇 3 = 5000 , respectively. 

.1. Module reliability 

.1.1. The static module 

In this section, the mini-component method is used to evaluate the

eliability of the static module. In the MFT, module 3 and module 5

re static modules. Here we use the module 5 as an example. Module

 consists of three components, and system operation requires at least

wo components be operational. The failure probability of a k-out-of-n

ystem such as module 5 (2-out-of-3 system) in a single phase can be

xpressed as [25] , 

 𝑀 5 
( 𝑡 ) = 

𝑛 ∑
𝑖 = 𝑘 

𝐶 

𝑖 
𝑛 

(
1 − 𝐹 𝑀5 ( 𝑡 ) 

)𝑖 (
𝐹 𝑀5 ( 𝑡 ) 

)𝑛 − 𝑖 
, 𝐹 𝑀5 ( 𝑡 ) = 1 − 𝑒 − ( 𝑡 ∕ 𝛽𝑀5 ) 𝛼𝑀5 

(13) 

here F M5 ( t ) represents the CDF of each component in module 5. 

To deal with the dependency of the static modules among phases, a

et of mini-components is used to replace the unit in one specific phase.

sing module 5 as an example, the RBD and FT of this method [2] are

hown in Fig. 8 . 
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Fig. 7. The modularized FT (MFT) model. 

Table 3 

Parameters for the AOCS. 

Components Phase 1 Phase 2 Phase 3 

𝛼1 𝛽1 𝛼2 𝛽2 𝛼3 𝛽3 

A\B 2 500 2 500 1.5 1.5 ×10 4 

AG 2 900 2 900 2 900 

C\D\E\F 1.5 400 1.5 600 3 1 ×10 4 

EG 1.8 600 1.8 600 1.8 600 

G 1.5 1000 1.5 1500 2 3 ×10 4 

H\I 2 600 1.8 300 1.5 1 ×10 4 

J\K\L 1.5 1500 2.5 1500 2.5 3.2 ×10 4 

Fig. 8. The RBD and FT of the mini-components method. 

Table 4 

Reliability of modules 3 and 5. 

Phase 1 Phase 2 Phase 3 

𝑅 𝑀 5 ,𝑗 
N/A N/A 0.9997 

𝑅 𝑀 3 ,𝑗 
N/A 0.9335 0.9079 

𝐹

w  

t  

p  

i  

s

 

r  

u  

o  

T

Fig. 9. The state transition diagram for module 1. 

Fig. 10. The state transition diagram for module 4. 

Table 5 

State probabilities of module 1. 

S1 S2 S3 S4 

T 1 0.9999 1.7669 ×10 − 4 1.2071 ×10 − 10 1.132 ×10 − 8 

T 2 0.9961 0.0039 1.4015 ×10 − 9 3.2951 ×10 − 6 

T 3 0.9897 0.0102 4.008 ×10 − 6 3.552 ×10 − 5 

Table 6 

State probabilities of module 4. 

S1 S2 S3 

T 1 0.9993 6.1359 ×10 − 4 1.1635 ×10 − 7 

T 2 0.9843 0.0157 5.314 ×10 − 5 
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o  
The CDF of module 5 in phase j , 𝐹 𝑀 5 ,𝑗 
( 𝑡 ) , can be expressed as, 

 𝑀 5 ,𝑗 
( 𝑡 ) = 

[ 

1 − 

𝑗−1 ∏
𝑖 =1 

(
1 − 𝑝 𝑀 5 ,𝑖 

(
𝑇 𝑖 
))] 

+ 

[ 

𝑗−1 ∏
𝑖 =1 

(
1 − 𝑝 𝑀 5 ,𝑖 

(
𝑇 𝑖 
))] 

⋅ 𝑝 𝑀 5 ,𝑖 
( 𝑡 ) 

(14) 

here T i represents the time duration of phase i and 𝑝 𝑀 5 ,𝑗 
( 𝑡 ) denotes

he failure probability of module M 5 at time t . Time t is measured from

hase j . The first term of Eq. (17) is the probability that the system fails

n the first 𝑗 − 1 phases and the second term is the probability that the

ystem fails at time t in phase j . 

With the parameters shown in Table 3 and Eqs. (13) and (14) , the

eliability of module 5 at the end of each phase, 𝑅 𝑀 5 ,𝑗 
( 𝑡 ) , can be eval-

ated, and the results are shown in Table 4 . Similarly, the reliability

f module 3 can also be evaluated, and the results are also shown in

able 4 . 
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.1.2. The dynamic module without structure variation 

From Fig. 6 , we can see that module 1 (M1) and module 4 (M4) are

ynamic modules without structure variation. In other words, the sys-

em structures of these two modules do not change in different phases.

ccording to the dynamic behaviors of the two modules, the system state

ransition figures are shown as Figs. 9 and 10 . The module state prob-

bilities in one phase can be evaluated by the approximation method

roposed in Section 2 . To deal with the dependency across phases, the

odule state at the start of phase i is set to be equal to the state at the

nd of last phase. By this method, the state probabilities of module 1

nd module 4 are evaluated and shown in Tables 5 and 6 . 

.1.3. The dynamic module with structure variation 

From the FT model in Fig. 6 , we can see that the working components

f module 2 are different in different phases. So a specially designed
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Fig. 11. The state transition diagram for module 2 in three phases. 

Table 7 

State probabilities of module 2. 

S1 S2 S3 S4 S5 

T 1 0.9993 0.0012 1.046 ×10 − 7 N/A N/A 

T 2 0.9999 0.0110 3.6455 ×10 − 11 3.455 ×10 − 11 5.358 ×10 − 7 

T 3 0.9998 1.894 ×10 − 4 2.2699 ×10 − 9 5.401 ×10 − 7 N/A 
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Fig. 12. The states relationship between two adjacent phases of module 2. 

Table 8 

Rules of phase algebra ( i < j ). 

M i · M j →M j 𝑀 𝑖 + 𝑀 𝑗 → 𝑀 𝑗 

𝑀 𝑖 ⋅𝑀 𝑗 → 𝑀 𝑖 𝑀 𝑖 + 𝑀 𝑗 → 𝑀 𝑖 

𝑀 𝑖 ⋅𝑀 𝑗 → 0 𝑀 𝑖 + 𝑀 𝑗 → 1 
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ethod is needed to deal with the module 2. It is important to note

hat, although the system structures are different in different phases,

he components ’ states are the same between the end of one phase and

he beginning of the next phase. Based on this characteristic, the module

eliability can be assessed by three steps. 

tep 1: Construct the state transition diagram for each phase according

to its own dynamic behaviors. In this paper, the module 2 is

working in all three phases and the state transition diagram for

each phase is shown in Fig. 11 . 

tep 2: Construct the relationship between the states of every two adja-

cent phases according to the system structure [26] . The relation-

ship of states between every two phases of module 2 is shown

in Fig. 12 . From Fig. 12 , we can see that both state 1 and state 2

of phase 1 are mapped into state 1 of phase 2. The reason is that

component D does not fail if module 2 stays in state 1 or state

2, and module 2 will stay in state 1 at the beginning of phase 2

if component D does not fail. 

tep 3: Evaluate the module reliability by the approximation method

from one phase to the next according to the relationship

between every two adjacent phases and the approximation

method. The module state probabilities at the end of each phase

are shown in Table 7 . 

.2. System reliability 

In the last section, the reliability of each module has been evaluated

lready. With the independent basic events, the system reliability can be
126 
ssessed efficiently by the 5-step PMS–BDD method, proposed by Zang

nd Trivedi [2] and used in [1,7] . The PMS–BDD method can combine

he BDD models for the phases by phase algebra shown as Table 8 to

btain the final BDD to evaluate the system unreliability. If the variables

inked by edges directly belong to different variables, the evaluation

ethod will be the same as the traditional BDD method. But if they

elong to the same components in different phases, the phase algebra

an be used to cancel the amount of the final BDD model. 

On the other hand, the size of a BDD heavily depends on the order of

ariables. There exist two phase-dependent operation (PDO) ways: for-

ard PDO and backward PDO. According to [2] , the BDD generated by

ackward PDO (phase-dependent operation) is much smaller than that

enerated by the forward PDO so that the system reliability evaluation

s easier. Applying the backward PDO in the AOCS and taking an order

f M 1, 3 < M 1, 2 < M 1, 1 < M 2, 3 < M 2, 2 < M 2, 2 < M 3, 3 < M 3, 2 < M 3, 1

 M 4, 2 < M 5, 3 , each phase of the AOCS can be transferred from the FTs

n Fig. 6 to the BDD models in Fig. 13 . 

By applying the phase algebra, the BDD models of the three phases

an be combined and simplified as Fig. 14 . 

The system reliability R sys is the probability of the SDP from the root

o the vertex ‘0 ′ through the system BDD figure. From Fig. 14 , we can

et the disjoint path: M 1, 3 M 2, 3 M 3, 3 M 4, 2 M 5, 3 . According to the SDP,

he system reliability can be assessed by, 

 sys = 𝑃 

(
𝑀 1 , 3 𝑀 2 , 3 𝑀 3 , 3 𝑀 4 , 2 𝑀 5 , 3 

)
= 𝑃 

(
𝑀 1 , 3 

)
𝑃 

(
𝑀 2 , 3 

)
𝑃 

(
𝑀 3 , 3 

)
𝑃 

(
𝑀 4 2 

)
𝑃 

(
𝑀 5 , 3 

)
= 𝑃 

(
1 − 𝑃 

(
𝑆4 𝑀1 

(
𝑇 3 
)))

𝑃 
(
1 − 𝑃 

(
𝑆4 𝑀2 

(
𝑇 3 
)))

𝑅 𝑀 3 

(
𝑇 𝑤 

)
𝑃 
(
1 − 𝑃 

(
𝑆3 𝑀4 

(
𝑇 1 + 𝑇 2 

)))
𝑅 𝑀 5 

(
𝑇 𝑤 

)
(15) 

here Si Mj represents the state i of module j and T w represent the whole

ifetime that 𝑇 𝑤 = 𝑇 1 + 𝑇 2 + 𝑇 3 . With Eq. (15) , the system reliability of

he PMS can be computed as 0.907603. 
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Fig. 13. The BDD models for each phase of the AOCS. 

Fig. 14. The BDD model for the multi-phased AOCS. 
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. Conclusions 

In this paper, the reliability modelling and assessment of a realistic

ulti-phase system, AOCS in manmade satellite that consists of cold

tandby non-exponential components, is investigated. Meanwhile only

art of the components can be repaired due to the weight restriction.

ith the non-exponential distributions, the traditional Markov process

s not applicable. So the semi-Markov process is used to address this

roblem. To calculate the complicated integral equations in the SMP,

n approximation method is proposed and the accuracy of this method

s checked carefully. 

In this paper, the system configuration and the working procedure

f the multi-phased altitude and orbit control system (AOCS) in man-

ade satellite are introduced in detail. Through the modularization

ethod, the system is divided into three types of modules: static mod-

les, and dynamic modules with and without structure variation. The

eliability of the dynamic modules can be addressed by the SMP and

pproximation methods. And the static modules can be solved by the

ini-component method. The reliability of the multi-phased AOCS can

e addressed throuth integrating the results of all the modules by the

MS-BDD model. 

In this paper, we mainly focus on a multi-phased system with cold

tandby and partial repaired components in the AOCS of manmade satel-

ite, but in reality a system can have much more complicated dynamic

ehaviors such as common-cause failures. In addition, the numbers of

hases for certain systems can easily exceed three if the phase is divided

recisely. Future works will be focused on these directions. 
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