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a b s t r a c t

This paper conducts a Bayesian analysis of inverse Gaussian process models for degradation modeling
and inference. Novel features of the Bayesian analysis are the natural manners for incorporating
subjective information, pooling of random effects information among product population, and a
straightforward way of coping with evolving data sets for on-line prediction. A general Bayesian
framework is proposed for degradation analysis with inverse Gaussian process models. A simple inverse
Gaussian process model and three inverse Gaussian process models with random effects are investigated
using Bayesian method. In addition, a comprehensive sensitivity analysis of prior distributions and
sample sizes is carried out through simulation. Finally, a classic example is presented to demonstrate the
applicability of the Bayesian method for degradation analysis with the inverse Gaussian process models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modern products evolve from generation to generation. It naturally
gives rise to the continuing cutting down of time-to-market and the
ever-increasing pace of new products appearing on the market.
Meanwhile, product reliability has become an indispensable aspect
of customer expectation. Increased reliability expectation with lower
cost has become a critical issue for companies to deliver competitive
products. Methods such as condition monitoring and degradation
analysis are developed for reliability analysis of modern products.
Degradation analysis is demonstrated as a significant toolkit, especially
for the ones that are subjected to limited test time and sample size [1].
A comprehensive guide to degradation analysis is previously intro-
duced by Meeker and Escobar [2]. Followed by a great amount of
published papers, degradation related methods are introduced for
various fields of reliability, which include reliability tests [3–5],
reliability analysis [6–9], and fault prognostics [10–13]. Degradation
modeling and parameter estimation are two indispensable aspects for
the implementation of degradation analysis. A suitable degradation
model is the key point for degradation characterization and reliability
representation of a product. Meanwhile, a flexible estimation method
is the key point for reliability assessment and degradation inference of
a product. A high-precision reliability analysis of modern products

consequently relies heavily on these two critical aspects of degradation
analysis.

Considering the research on degradation modeling, the stochastic
process based models are generally used [7,9]. Two most common
classes of stochastic process are the gamma and theWiener processes.
These two classes have beenwell studied in the literature. The gamma
process and its extensions in degradation modeling have been
investigated in the works [14–16]. The applications of the Wiener
process and its extensions in degradation modeling have also been
investigated in the works [17,18]. Recently, the inverse Gaussian (IG)
process has been reported as an attractive and flexible model for
degradation modeling byWang and Xu [19]. It has been demonstrated
by them that the IG process model is more suitable than the Wiener
and the gamma processes models for degradation modeling in some
applications. Qin et al. [20] has also demonstrated the flexibility of IG
process for degradation modeling through the application to the
reliability analysis of energy pipelines. These two works were based
on a simple IG process model. Ye and Chen [21] investigated the
physical interpretation of IG process for degradation modeling and
further introduced three IG process models with random effects by
extending the simple IG model. An inverse normal-gamma mixture of
an IG process model was also proposed by Peng [22]. These models
were useful for the situations that random effects were associated
with the degradation mean and variance of products. However,
considering the situations that the random effects affect solely on
the degradation mean, these models were limited due to the
correlation between degradation mean and variance through ran-
dom effects parameter. A classic example is the degradation data of
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the GaAs Laser investigated by Wang and Xu [19] and Ye and Chen
[21]. Unit-specific heterogeneity of degradation rate among product
population is significant, yet the variance of degradation increments
within a specific unit is small. A degradation model with random
effects affect solely on the degradation mean is needed for the
degradation modeling of this GaAs Laser degradation data. Accord-
ingly, the IG process for degradation modeling still deserves further
investigation to make it more versatile for various situations of
degradation data.

Considering the research on parameter estimation, the max-
imum likelihood estimation (MLE) is often the tool of choice to
implement parameter estimation for the IG process models. Wang
and Xu [19], Ye and Chen [21] and Peng [22] have introduced the
MLE for the IG process model using expectation maximization
(EM) and bootstrap methods. Nowadays, two typical situations
are generally encountered in degradation analysis of modern
product, i.e. (1) the degradation analysis with sparse/fragmented
degradation observations, and (2) the degradation analysis with

Nomenclature

IG inverse Gaussian
MLE maximum likelihood estimation
EM expectation maximization
PDF probability density function
CDF cumulative distribution function
MCMC Markov chain Monte Carlo method
RD random drift IG process
RV random volatility IG process
RDV random drift-volatility IG process
θ parameters of an IG process model
θF parameters without random effects (fixed parameters)
θR parameters with random effects (random parameters)
θH hyper-parameters of probability distributions for the

random parameters
πðθÞ prior distribution
Yi degradation data of the ith product with i¼ 1;…;n
θRi random parameters of the ith degradation process

with i¼ 1;…;n
πðθRi jθHÞ prior distribution of random parameters θRi with

hyper-parameters θH

Δyij degradation increment
LðYjθÞ likelihood function
f ðΔyijjθF Þ PDF of degradation increment under an IG process

model without random effects
f ðΔyijjθF ; θRi Þ PDF of degradation increment under an IG process

model with random effects
pðθF ; θR; θH jYÞ posterior distribution
YSðtÞ degradation process with a simple IG process model
ΛðtÞ monotone increasing function in an IG process model
θΛ parameters of function ΛðtÞ
ΦðU Þ CDF of a standard normal distribution
ϕðU Þ PDF of a standard normal distribution
PrðU Þ probability of an event
f ðyja; bÞ PDF of an IG distribution
Fðyja; bÞ CDF of an IG distribution
IGðμΔΛ; λΔΛ2Þ IG process with function ΛðtÞ and parameter μ

and λ
f SðyjμΛðtÞ; λΛ2ðtÞÞ PDF of a simple IG process model
RSðtjμΛðtÞ; λΛ2ðtÞÞ reliability function of a product with a simple

IG process model
TNðω; κ�2Þ truncated normal distribution with mean ω and

variance κ�2

Uniformða; bÞ uniform distribution with boundary a; b
� �

Gammaðδ; γÞ gamma distribution with shape parameter δ and
rate parameter γ

YS degradation data with a simple IG process model
LSðYSjμ; λ; θΛÞ likelihood function of YS with a simple IG

process model
pðμ; λ; θΛjYSÞ posterior distribution of model parameters for a

simple IG process model

RSðtjYSÞ inference of reliability for a product with a simple IG
process model

f S;mþ1ðyjYSÞ prediction of degradation at tmþ1 for a product
with a simple IG process model

YRDðtÞ degradation process with a RD model
f RDðyjω; κ;ΛðtÞ; λÞ PDF of a RD model
RRDðtjω; κ;ΛðtÞ; λÞ reliability function of a product with a

RD model
YRD degradation data with a RD model
μ set of random parameters
lRDðYRD;i; μijω; κ; θΛ; λÞ likelihood contribution of the ith degra-

dation path YRD;i with a RD model
LRD YRD;μjω; κ; θΛ; λð Þ likelihood function of YRD and random

parameters with a RD model
pðω; κ; θΛ; λ; μjYRDÞ posterior distribution of model parameters

for a RD model
RRDðtjYRDÞ inference of reliability for the product population

with a RD model
f RDi;mþ1ðyjYRDÞ prediction of degradation at ti;mþ1 for the ith

product with a RD model
YRV ðtÞ degradation process with a RV model
Γð�Þ gamma function
f RV ðyjμ;ΛðtÞ; δ; γÞ PDF of a RV model
RRV ðtjμ;ΛðtÞ; δ; γÞ reliability function of a product with a

RV model
YRV degradation data with a RV model
λ set of random parameters
LRV ðYRV ; λjμ; θΛ; δ; γÞ likelihood function of YRV and random

parameters with a RV model
pðμ; θΛ; δ; γ; λjYRV Þ posterior distribution of model parameters

for a RV model
RRV ðtjYRV Þ inference of reliability for the product population

with a RV model
f RVi;mþ1ðyjYRV Þ prediction of degradation at ti;mþ1 for the ith

product with a RV model
YRDV ðtÞ degradation process with a RDV model
f RDV ðyjω; κ;ΛðtÞ; λÞ PDF of a RDV model
RRDV ðtjω; κ;ΛðtÞ; λÞ reliability function of a product with a

RDV model
YRDV degradation data with a RDV model
LRDV ðYRDV ;μjω; κ; θΛ; λÞ likelihood function of YRDV and random

parameters with a RDV model
pðω; κ; θΛ; λ;μjYRDV Þ posterior distribution of model parameters

for a RDV model
YA degradation data with subscript A representing a

specific IG process model
FAðyjθAÞ CDF of an IG process model
Sð ~θAÞ Bayesian χ2 test statistic
Bp Bayesian χ2 test probability
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evolving/updating degradation observations. The first situation is
commonly introduced by the reliability analysis of the products
that cannot be monitored frequently, such as the underground oil
and natural gas pipelines [20]. Subjective information or historical
information is generally incorporated to complement the insuffi-
ciency of these sparse/fragmented degradation observations
[23,24]. In addition, it is hard for the MLE-based method to carry
out the degradation analysis under this situation. A degradation
analysis method for information integration is needed. The second
situation is generally introduced by the system health manage-
ment of the products that are subject to condition monitoring,
such as the super luminescent diode [9] and the GaAs Laser [19].
The degradation analysis results are updated when newly
observed degradation data is available [25,26]. A degradation
analysis method for model updating is needed as well. For the
degradation analysis with subjective information and continual
monitoring data, Bayesian method has become a standard toolkit
[3,9,11]. However, little work has been published on the degrada-
tion analysis with IG process using Bayesian method. Rare excep-
tions are the works presented by Qin et al. [20] and Peng et al. [27].
Qin et al. [20] presented the parameter estimation of a simple IG
process model using Bayesian method. Their method was limited
to the simple IG process model. Moreover, the aspects concerning
hierarchical priors for random effects information fusion and
posterior analysis for degradation analysis results updating were
not well studied. In our previous work [27], the Bayesian method
for degradation analysis with a random drifts IG process model
introduced by Ye and Chen [21] was presented. A Bayesian χ2

goodness-of-fit test was introduced for this random drifts IG
process model. However, this work was limited to a specific IG
process model and various aspects were not well developed. An
improvement of the random drifts IG process model and a further
extension of the proposed Bayesian method for more general
situation is needed.

The objective of this paper is to present a comprehensive Bayesian
analysis of inverse Gaussian process models for degradation modeling
and inference. In comparison with the results reported in [19–22] and
our previous work [27], the following aspects are addressed in this
paper: (1) a general Bayesian framework for degradation analysis with
IG process models is constructed, where four IG process models are
derived progressively under the Bayesian framework, (2) a natural
manner for subjective information integrating is introduced, where
sensitivity analysis for prior distributions and sample sizes is studied
through simulation, (3) a hierarchical Bayesian method for random
effect information fusion is presented, where there IG process models
with random effects are investigated using hierarchical Bayesian
method and the random drift IG process model introduced by Ye
and Chen [21] is improved, and (4) a straightforward way of coping
with evolving degradation observations is introduced, where a classi-
cal example is incorporated to demonstration the applicability of the

proposed Bayesian method. Finally, the effectiveness of the proposed
Bayesian framework is demonstrated through numerical comparisons.
The degradation analysis results of an illustrative example using the
proposed Bayesian method are compared with the ones obtained
using MLE-based method introduced by Ye and Chen [21].

The outline of the paper is as follows. A general Bayesian
framework for the IG process model is constructed in Section 2
with specific descriptions of three critical aspects. The Bayesian
framework is then implemented to the IG process models in
Section 3. The derivation of hierarchical priors, the formulization
of posterior distribution, and the implementation of posterior
analysis are described in this section. A Bayesian χ2 goodness-of-
fit test for the IG process models is introduced in Section 4. Section
5 describes the simulation study of sensitivity analysis for the
Bayesian analysis subjected to different sample sizes and choices
of prior distributions. In Section 6, the presented Bayesian analysis
for three IG process models with random effects is then applied to
the GaAs Lasers data. We then conclude the paper in Section 7
with a brief description of possible topics for future research.

2. A general Bayesian framework for the IG process models

When the degradation process of a product is observed and an
IG process degradation model is chosen for degradation modeling,
the associated parameter estimation, reliability inference and
degradation prediction are indispensable aspects of degradation
analysis. This section aims to develop a coherent Bayesian frame-
work for degradation analysis with IG process models. Aiming at
the IG process models in this paper, a general Bayesian framework
is first constructed and depicted in Figs. 1–3.

As depicted in Fig. 1, θ is a parameter set for a specific IG process
model and a joint prior distribution πðθÞ is used to describe prior
information about these parameters. Since there are different types of
unknown parameters, we use θF , θR and θH with θ¼ fθF ; θR; θHg
separately denoting the parameters without random effects (fixed
parameters), the parameters with random effects (random para-
meters), and the hyper-parameters of probability distributions for
the random parameters. The prior distributions for fixed parameters
are derived based on the available information, such as subjective
information from experts’ judgment and historical information from
similar products. The prior distributions for random parameters are
derived using hierarchical priors. It aims to pool random effects
information among product population. For each degradation path
Yi with i¼ 1;…;n, a prior distribution πðθRi jθHÞ is specified for θRi . It is
used to model the unit-to-unit variability among the product popula-
tion. Simultaneously, hierarchical prior distribution πðθHÞ is specified
for θH which are hyper-parameters of the prior distributionsπðθRi jθHÞ.
These priors are used jointly to integrate random effects information
among different degradation paths. Specific descriptions of prior

Priors
θ

Hierarchical priors:

Yn

Y1 1 |R Hθ θ
~

|R H
nθ θ

... Hθ

~

...

Uniform,

gamma,

normal,

lognormal

A
General priors:

Subjective information,

Historical information
Fθ Quantification

Elicitation

Fig. 1. A general Bayesian framework for the IG process models: elicitation of hierarchical prior distributions.
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elicitation and construction of hierarchical priors for the IG process
models are separately described in Sections 3.1 and 3.2.

Then the Bayesian framework moves to Fig. 2. The information
of degradation data Y are delivered through the construction of
the likelihood function LðY jθÞ. It is constructed by multiplying
relevant likelihood contributions of degradation paths Yi under
specific IG process models. For the IG process model without
random effects, the likelihood contribution is formulized by multi-
plying the probability density functions (PDF) of degradation
increments Δyij with j¼ 1;…;mi, which is given in Fig. 2 as
f ðΔyijjθF Þ. For the IG process model with random effects, the
likelihood contribution is formulized by multiplying the PDF of
degradation increments Δyij, as well as the PDF of random
parameter θRi , which is given in Fig. 2 as f ðΔyijjθF Þ and πðθRi jθHÞ.
Detailed constructions of likelihood functions for the IG process
models are separately described in Section 3.

After prior distribution and likelihood function are separately
derived in Figs. 1 and 2, the Bayesian framework then moves to
Fig. 3. Since random effects are incorporated using hierarchical
priors, the hierarchical Bayesian formula is used to formulate the
posterior distribution pðθF ; θR; θHjYÞ. It is a joint posterior distribu-
tion of parameters with different types as θF , θR and θH . To
facilitate posterior analysis, the Markov chain Monte Carlo method
(MCMC) is used to generate samples from the posterior distribu-
tion. It is implemented through the software package OpenBUGS
[28]. The generate samples are then tested using a Bayesian
goodness-of-fit test. Finally, simulation based posterior inferences
are carried out with these validated posterior samples. For the
posterior inference of individual product, the posterior samples of
parameters θF and θRi are used. For the posterior inference of
product population, the posterior samples of parameters θF and θH

are used. In addition, the kernel distributions obtained from these
posterior samples are further incorporated as prior distributions
for the analysis of newly observed data. It is aimed to facilitate the
implementation of the proposed Bayesian method in the scenario

of condition monitoring, where on-line updating of degradation
analysis is required. Specific derivation of posterior distribution
and description of posterior analysis for different IG process
models are presented in Section 3. A Bayesian χ2 goodness-of-fit
test for the IG process models is developed in Section 4.

To implement this Bayesian framework on the IG process
models, three aspects are highlighted in Section 3, (1) the deriva-
tion and selection of prior distributions, (2) the formulization of
likelihood functions, and (3) the obtaining of posterior distribu-
tions along with code scripts in OpenBUGS and the associated
formulations for posterior analysis.

3. Bayesian analysis for the IG process models

3.1. Bayesian analysis for a simple IG process model

3.1.1. Model description
A simple IG process model with function ΛðtÞ and parameters μ

and λ is defined for a degradation process YSðtÞ; tZ0
� �

with
YSð0Þ � 0. It has the following properties [19,21]:

YSðtÞ has independent increments, i.e., YSðt4Þ�YSðt3Þ and
YSðt2Þ�YSðt1Þ are independent for 8 t44t3Zt24t1, and

the degradation increment YSðtþΔtÞ�YSðtÞ follows an IG dis-
tribution as IGðμΔΛ; λΔΛ2Þ,

where ΔΛ¼ ΛðtþΔtÞ�ΛðtÞ and ΛðtÞ is a monotone increasing
function. In this paper, to present a general Bayesian framework for
the IG process models, we use a general function ΛðtÞwith parameter
θΛ in the following sections. Various particular forms of ΛðtÞ can be
used according to specific engineering applications, such as a power-
law function, an exponential function, and even a physical-model
based function. The Bayesian analysis presented below can also be
applied to the IG process models with specific forms of ΛðtÞ by
substituting the particular form of ΛðtÞ and assigning prior distribu-
tions for parameters θΛ. A further illustration with ΛðtÞ ¼ tq is

ikelihood contributions without random effect:

ikelihood contributions with random effect:

Fig. 2. A general Bayesian framework for the IG process models: construction of likelihood function.

Fig. 3. A general Bayesian framework for the IG process models: formulation of posterior distribution and implementation of posterior analysis.
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presented in the simulation study section and the illustrative
example section as well.

The PDF of the IG distribution for y� IGða; bÞ; a; b40 with
mean a and variance a3=b is

f ðyja; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b

2πy3

s
exp �bðy�aÞ2

2a2y

" #
; y40 ð1Þ

and its cumulative distribution function (CDF) is

F yja;bð Þ ¼Φ

ffiffiffi
b
y

s
y
a
�1

� �" #
þexp

2b
a

	 

Φ �

ffiffiffi
b
y

s
y
a
þ1

� �" #
ð2Þ

where ΦðU Þ is the standard normal CDF.
The degradation process is then described as YSðtÞ � IGðμΛðtÞ;

λΛ2ðtÞÞ; μ; λ40. The PDF of the simple IG process model for YSðtÞ is
obtained as

f SðyjμΛðtÞ; λΛ2ðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λΛ2ðtÞ
2πy3

s
exp �λ y�μΛðtÞð Þ2

2μ2y

" #
ð3Þ

Generally, a component with a degradation process YSðtÞ fails
when its degradation path firstly reaches a predefined threshold D.
The reliability function of this component is obtained by consider-
ing the monotonicity property of the IG process and the distribu-
tion characteristics of degradation increments as

RSðtjμΛðtÞ; λΛ2ðtÞÞ ¼ Pr YSðtÞ�YSð0ÞoDjμ;ΛðtÞ; λð Þ

¼Φ

ffiffiffiffi
λ

D

r
D
μ
�ΛðtÞ

	 
" #
þexp

2λΛðtÞ
μ

	 

Φ �

ffiffiffiffi
λ

D

r
D
μ
þΛðtÞ

	 
" #
ð4Þ

A pictorial description of degradation paths for the simple IG
process model is presented in Fig. 4. Intuitively, since no random
effects is included in this model, all the parameters μ, ΛðtÞ and λ are
unknown parameters. The degradation paths and the induced
lifetime distribution have relevantly narrow spreads. This simple
IG process model is suitable for the degradation modeling of a
product for which no significant unit-to-unit variation within a
population has been observed.

3.1.2. Bayesian analysis
Suppose the degradation observations of YSðtÞ are observed for

n units. Let YSðtijÞ denote the jth observation for unit i at time point
tij with j¼ 1;…;mi and i¼ 1;…;n. Let Δyij ¼ YSðtijÞ�YSðti;j�1Þ be
the degradation increment with YSðti;0Þ ¼ 0. Under the simple IG
process model, the Δyijs are independent and follow the IG
distribution IGðμΔΛij; λΔΛ2

ijÞ. Following the framework presented

in Section 2, the Bayesian analysis for the simple IG process model
is presented progressively as follow.

Following the framework presented in Fig. 1, suppose prior
distributions for unknown parameters μ, λ, and θΛ for ΛðtÞ are
specified based on prior information. Since no random effects is
considered for these parameters, non-hierarchical prior distribu-
tions are ascribed for these parameters as

μ� TNðω; κ�2Þ; θΛ�UniformðaΛ; bΛÞ; λ�Gammaðδ; γÞ ð5Þ

where TNðω; κ�2Þ is a truncated normal distribution with mean ω
and variance κ�2, UniformðaΛ;bΛÞ is a uniform distribution with
boundary aΛ; bΛ

� �
, and Gammaðδ; γÞ is a gamma distribution with

shape parameter δ and rate parameter γ.
The prior distributions for μ and λ are chosen based on the

considerations that when random effects is introduced for these
parameters, the truncated normal distribution and gamma dis-
tribution are separately chosen as the characteristic distributions
for random effects modeling [21]. The choosing of random effects
distributions can provide a certain tendency for the choice of prior
distributions. Moreover, the truncated normal distribution is easy
to be handled with hyper-parameters ω and κ�2 as mean and
variance in quantification of subjective information. This is
because that the parameter μ is related to the degradation rate
in a degradation curve. Expert testimony about this degradation
rate can be directly specified on its hyper-parameters (Section
5.3 in [29]). Similarly, the gamma distribution also possesses
explicit parameters for experts’ probabilities elicitation. On the
other hand, direct information is hardly to be acquired for
parameter θΛ. A general non-informative prior in the form of
uniform distribution is chosen (Section 2.6 in [30]) for θΛ. Prior
derivation is critical for Bayesian analysis, especially when field
data is scarce. For more information about subjective information
quantification and prior distribution derivation please refer to the
literature [31–34].

For degradation observation YS, Δyijs are independent and

follow IG distribution IGðμΔΛij; λΔΛ2
ijÞ. The likelihood function for

this degradation data under simple IG process model is obtained as

LSðYSjμ; λ; θΛÞ ¼ ∏
n

i ¼ 1
∏
mi

j ¼ 1
f ðΔyijjμΔΛij; λΔΛ2

ijÞ ð6Þ

where ∏mi
j ¼ 1f ðΔyijjμΛij; λΛ

2
ijÞ is the likelihood contribution of the ith

degradation paths YS;i. It is presented in Fig. 2 with

f ðΔyijjμΔΛij; λΔΛ2
ijÞ given as f ðΔyijjθF Þ.

Based on the prior distributions and likelihood function above,
the joint posterior distribution for fixed parameters μ, λ and θΛ are
obtained as

pðμ; λ; θΛjYSÞpπðμÞπðλÞπðθΛÞLSðYSjμ; λ; θΛÞ

pϕ κðμ�ωÞ½ �λδ�1expð�γλÞ∏n
i ¼ 1∏

mi
j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
λΔΛ2

ij

q
exp �λðΔyij�μΔΛijÞ2

2μ2Δyij

" #

ð7Þ

where ϕðUÞ is the standard normal PDF, and the posterior dis-
tribution is given in the form of probabilistic kernel, where the
proportionality constant part that does not related to the model
parameter are omitted.

Obviously, there is no analytical expression for this joint
posterior distribution. However, the MCMC can be utilized to
generate samples from this joint posterior distribution. Moreover,
a well-developed software package, OpenBUGS, is used to carry
out the implementation of the MCMC. For details regarding MCMC
and BUGS, readers are referred to the works [35,36] for construc-
tion of the MCMC algorithm, and the books [37,38] for coding
within R and BUGS.
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Fig. 4. A simulated simple IG process model with threshold D¼40.

W. Peng et al. / Reliability Engineering and System Safety 130 (2014) 175–189 179



Based on the joint posterior distribution, the inference of
reliability function and the prediction of degradation at time point
tmþ1 can be obtained as

RSðtjYSÞ ¼
Z
μ;λ;θΛ

RSðtjμΛðtÞ; λΛ2ðtÞÞpðμ; λ; θΛjYSÞdμdλdθΛ ð8Þ

f S;mþ1ðyjYSÞ ¼
Z
μ;λ;θΛ

f SðyjμΛðtmþ1Þ; λΛ2ðtmþ1ÞÞpðμ; λ; θΛjYSÞdμdλdθΛ

ð9Þ
where f S;mþ1ðyjYSÞ is the predicted PDF of degradation at time
point tmþ1, and f SðyjμΛðtÞ; λΛ2ðtÞÞ is the PDF of degradation process
YSðtÞ given in Eq. (3).

The calculations of Eqs. (8) and (9) are implemented through
simulation based integration. By calculating the relevant values of

RSðtj ~μ ~ΛðtÞ; ~λ ~Λ2ðtÞÞ and f S;mþ1ðyj ~μ ~Λðtmþ1Þ; ~λ ~Λ2ðtmþ1ÞÞ at each gener-

ated posterior sample ð ~μ; ~q; ~λÞ from pðμ; λ; θΛjYSÞ, statistical sum-
marizations such as mean, variance, and kernel density
distribution for RSðtjYSÞ and f S;mþ1ðyjYSÞ are obtained.

3.2. Bayesian analysis for a random drift IG process model

3.2.1. Model description
To account for the heterogeneity within a product population,

random effects are introduced in the simple IG process model to
generate random effects models. Ye and Chen [21] introduced a
random drift IG process (RD) model by letting μ in the simple IG
model follow a truncated normal distribution. Strictly speaking, it
is not a real RD model since both the mean and variance of the
degradation process are affected by the random parameter μ. In
this paper, an improvement of the RD model is introduced by
modifying the parameter structure of the simple IG process model
into YðtÞ � IGðμΛðtÞ; μ3Λ2ðtÞ=λÞ. The degradation mean of this model
is μΛðtÞ and the variance is λΛðtÞ. By letting μ follow a truncated
normal distribution, only the degradation mean is affected by the
random parameter. It then gives rise to the RD model in this paper
as YRDðtÞ � IGðμΛðtÞ; μ3Λ2ðtÞ=λÞ, μ� TNðω; κ�2Þ, λ40, where the PDF
of the truncated normal distribution is

gμðμjω; κ�2Þ ¼ κϕ κðμ�ωÞ½ �
1�Φð�κωÞ; μ40; κ40 ð10Þ

The PDF of degradation process YRDðtÞ for the RD model is
obtained by averaging the PDF of a simple IG process model with
modified parameter structure IGðμΛðtÞ; μ3Λ2ðtÞ=λÞ in the whole
range of μ as

f RDðyjω; κ;ΛðtÞ; λÞ ¼
Z
μ40

f SðyjμΛðtÞ; μ3Λ2ðtÞ=λÞgμðμjω; κ�2Þdμ

¼
Z
μ40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ3Λ2ðtÞ
2πλy3

s
exp �μðy�μΛðtÞÞ2

2λy

" #
κϕ κðμ�ωÞ½ �
1�Φð�κωÞdμ

ð11Þ
and its reliability function with failure threshold D is obtained in
the same way as

RRD tjω; κ;ΛðtÞ; λð Þ ¼
Z
μ40

RSðtjμΛðtÞ; μ3Λ2ðtÞ=λÞgμðμjω; κ�2Þdμ

¼
Z
μ40

Φ

ffiffiffiffiffiffi
μ

λD

r
D�μΛðtÞð Þ

� �
þexp

2μ2ΛðtÞ
λ

	 



�Φ �
ffiffiffiffiffiffi
μ

λD

r
DþμΛðtÞð Þ

� ��
κϕ κðμ�ωÞ½ �
1�Φð�κωÞdμ ð12Þ

A pictorial description of degradation paths for this RD model is
presented in Fig. 5. Since random effects are considered in the
parameter μ, the mean function of the IG process μΛðtÞ varies in a
certain extent. It leads to the dispersion of the degradation rate and
the larger variance of the induced lifetime distribution. This model

is appropriate for the degradation modeling of products for which
significant variation of degradation rate is observed within the
product population.

3.2.2. Bayesian analysis
Given the degradation processes YRDðtÞ at some discrete observa-

tion times for n units are observed as YRD. Then under the RD IG
process model, the degradation increments Δyij ¼ YRDðtijÞ�YRDðti;j�1Þ
are independent and follow IG distribution IGðμiΔΛij; μ

3
i ΔΛ

2
ij=λÞ,

μi � TNðω; κ�2Þ, ΔΛij ¼ ΛðtijÞ�Λðti;j�1Þ.
According to the framework presented in Fig. 1, prior distribu-

tions for the RD model are given as

ω� TNðaω; b�2
ω Þ

κ� TNðaκ ; b�2
κ Þ

8<
: ;

θΛ �UniformðaΛ; bΛÞ
λ�Gammaðδ; γÞ

(
ð13Þ

Since random effects are incorporated in parameter μ, each
degradation path possesses a specific parameter μi that follows
TNðω; κ�2Þ with i¼ 1;…;n. To pool random effects information
among different degradation paths, we let all μi follow the same
prior distributions with hyper-parameters ω and κ. The prior
distributions for these hyper-parameters are specified as in Eq.
(13). Compared with the prior distributions for the simple IG
process model given in Eq. (5), the prior distributions specified for
the RD model are delivered in a hierarchical way. It can also be
seen from Fig. 1 that each degradation path Yi possesses a specific
parameter θRi � πðθRi jθHÞ with all the hyper-parameters θH specified
with the same prior distributions. Based on this type of prior
distributions, the estimations of parameters θH depend on obser-
vation data from all the degradation paths. Accordingly, the
inference of unit-specific parameter θRi benefits from the informa-
tion provided by other degradation paths.

For observed degradation data YRD, the likelihood contribution
of the ith degradation path YRD;i with degradation increments Δyij
and random parameter μi is obtained as follow

lRDðYRD;i; μijω; κ; θΛ; λÞ ¼ gμðμijω; κ�2Þ ∏
mi

j ¼ 1
f ðΔyijjμΔΛðtÞ; μ3ΔΛ2ðtÞ=λÞ

ð14Þ

This likelihood contribution is presented in Fig. 2 with

f ΔyijjμΔΛ tð Þ; μ3ΔΛ2 tð Þ=λ
� �

given as f ðΔyijjθF ; θRi Þ, and gμðμijω; κ�2Þ
given as πðθRi jθHÞ.
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Fig. 5. A simulated RD model with threshold D¼ 40.
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Then the likelihood function for the observed degradation data
YRD is obtained as follow

LRDðYRD;μjω; κ; θΛ; λÞ ¼ ∏
n

i ¼ 1
lRDðYRD;i; μijω; κ; θΛ; λÞ ð15Þ

where μ¼ ðμ1;…; μnÞ includes all the random parameters for the
degradation paths YRD and all μi follow the sample distribution
function with the same parameters ω and κ.

As done in Section 3.1.2, the joint posterior distribution for both
fixed parameters ω, κ, θΛ and λ, and random parameters μ is
obtained as

p ω; κ; θΛ; λ;μjYRDð ÞpπðωÞπðκÞπðθΛÞπðλÞLRDðYRD;μjω; κ; θΛ; λÞ
pϕ bωðω�aωÞ

� �
ϕ bκðκ�aκÞ
� �

λδ�1expð�γλÞ�

∏
n

i ¼ 1

κϕ κðμi�ωÞ� �
1�Φð�κωÞ ∏

mi

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ3i ΔΛ

2
ij

λ

s
exp �μiðΔyij�μiΔΛijÞ2

2λΔyij

" #8<
:

9=
; ð16Þ

Based on the joint posterior distribution, the inference of
reliability for the product population and the prediction of
degradation for the ith product are obtained as

RRDðtjYRDÞ ¼
Z
ω;κ;θΛ ;λ

RRDðtjω; κ;ΛðtÞ; λÞpðω; κ; θΛ; λjYRDÞdωdκdθΛdλ

ð17Þ

f RDi;mþ1ðyjYRDÞ ¼
Z
μi ;θΛ ;λ

f SðyjμiΛðtÞ; μ3i Λ2ðtÞ=λÞpðμi; θΛ; λjYRDÞdμidθΛdλ

ð18Þ
where f RDi;mþ1ðyjYRDÞ is the predicted PDF of degradation for the
ith unit at time point ti;mþ1, and p ω; κ; θΛ; λjYRDð Þ and pðμi; θΛ; λjYRDÞ
are the marginal joint posterior distributions for the correspond-
ing parameters, which are obtained from the joint posterior
distribution given in Eq. (16) by integrating over the parameters
being excluded.

The calculations of Eq. (16) are implemented using the MCMC
method through OpenBUGS. The code script for the RD model is
attached in the Appendix. Statistical summaries of Eqs. (17) and
(18) are obtained using a simulation based integration method
based on the posterior samples of Eq. (16), which are similar to the
calculations of Eqs. (8) and (9) presented above.

3.3. Bayesian analysis for a random volatility IG process model

3.3.1. Model description
A random volatility IG process (RV) model is introduced by

letting λ in the simple IG model follow a gamma distribution and
the other parameters μ and ΛðtÞ remain the same [21]. The RV
model is then given as YRV ðtÞ � IGðμΛðtÞ; λΛ2ðtÞÞ, λ�Gammaðδ; γÞ,
μ40, where the PDF of the gamma distribution is

gλðλjδ; γÞ ¼
γδλδ�1

ΓðδÞ expð�γλÞ; δ40; γ40 ð19Þ

where ΓðδÞ ¼ R1
0 tδ�1e� tdt is the gamma function.

Similar to the RD model, the PDF of degradation process YRV ðtÞ
with a RV model is obtained as

f RV ðyjμ;ΛðtÞ; δ; γÞ ¼
Z
λ40

f SðyjμΛðtÞ; λΛ2ðtÞÞgλ λjδ; γð Þdλ

¼ Γð1=2þδÞγδ

ΓðδÞ γþ y�μΛðtÞð Þ2=ð2μ2yÞ
h i1=2þ δ

ffiffiffiffiffiffiffiffiffiffiffi
Λ2ðtÞ
2πy

s
ð20Þ

The reliability function with failure threshold D for the RV
model is given as

RRV ðtjμ;ΛðtÞ; δ; γÞ ¼
Z
λ40

RSðyjμΛðtÞ; λΛ2ðtÞÞgλðλjδ; γÞdλ

¼
Z
λ40

Φ

ffiffiffiffi
λ

D

r
D
μ
�ΛðtÞ

	 
" #
þexp

2λΛðtÞ
μ

	 
(

�Φ �
ffiffiffiffi
λ

D

r
D
μ
þΛðtÞ

	 
" #)
γδλδ�1

ΓðδÞ exp �γλð Þdλ ð21Þ

A group of simulated degradation paths of a RV model are
presented in Fig. 6. As random effects are involved in the scale
parameter λ, the variance of degradation observations within each
unit is significant, yet the degradation rates among these units are
relevantly coherent. It can be identified by comparing the smooth-
ness of relevant degradation curves with the ones in Fig. 5.
Accordingly, the RV model is suitable for degradation modeling
of products for which overall degradation rate is coherent and
obvious unit-specific degradation variation exists.

3.3.2. Bayesian analysis
Similar to Section 3.2.2, under the RV model, the degradation

increments Δyij ¼ YRV ðtijÞ�YRV ðti;j�1Þ are independent and follow
IG distribution IGðμΔΛij; λiΔΛ2

ijÞ with λi �Gamma δ; γð Þ. Prior distri-
butions for parameters μ, θΛ, δ, and γ are specified following the
hierarchical strategy as

δ�Gammaðaδ; bδÞ
γ �Gammaðaγ ; bγÞ

(
;

μ� TNðω; κ�2Þ
θΛ �UniformðaΛ; bΛÞ

(
ð22Þ

Similarly, the likelihood function for the degradation data YRV

under RV model is obtained as

LRV ðYRV ;λjμ; θΛ; δ; γÞ ¼ ∏
n

i ¼ 1
gλðλijδ; γÞ ∏

mi

j ¼ 1
f ðΔyijjμΔΛij; λiΔΛ2

ijÞ
( )

ð23Þ

where λ¼ ðλ1;…; λnÞ includes all the random parameters for the
degradation paths YRV .

Based on the prior distributions and the likelihood function
given above, the joint posterior distribution for both fixed para-
meters μ, θΛ, δ and γ, and random parameters λ is obtained as

pðμ; θΛ; δ; γ; λjYRV ÞpπðμÞπðθΛÞπðδÞπðγÞLRV ðYRV ; λjμ; θΛ; δ; γÞ
pϕ κðμ�ωÞ½ �δaδ �1expð�bδδÞγaγ �1expð�bγγÞ�

∏
n

i ¼ 1

γδλδ�1

ΓðδÞ expð�γλÞ ∏
mi

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
λΔΛ2

ij

q
exp �λðΔyij�μiΔΛijÞ2

2μ2i Δyij

" #( )
ð24Þ

Based on the joint posterior distribution, the inference of relia-
bility for the product population and the prediction of degradation
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Fig. 6. A simulated RV model with threshold D¼ 40.
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for the ith product are obtained as

RRV ðtjYRV Þ ¼
Z
μ;θΛ ;δ;γ

RRV ðtjμ;ΛðtÞ; δ; γÞpðμ; θΛ; δ; γjYRV ÞdμdθΛdδdγ ð25Þ

f RVi;mþ1ðyjYRV Þ ¼
Z
μ;θΛ ;λi

f SðyjμΔΛij; λiΔΛ2
ijÞp μ; θΛ; λijYRVð ÞdμdθΛdλi

ð26Þ
where f RVi;mþ1 yjYRVð Þ is the predicted PDF of degradation for the ith
product at time point ti;mþ1, and pðμ; θΛ; δ; γjYRV Þ and pðμ; θΛ; λijYRV Þ
are the marginal joint posterior distributions for the corresponding
parameters, which are obtained from the joint posterior distribution
given in Eq. (24) by integrating over the parameters being excluded.

Similar to Section 3.2.2, the MCMC method and the simulation
based integration strategy are used for the calculations above. The
OpenBUGS code script for this model is obtained by slightly
modifying the one for the RD model provided in Appendix.

3.4. Bayesian analysis for a random drift-volatility IG process model

3.4.1. Model description
To account for the consideration that a unit with a higher

degradation rate is expected to suffer higher degradation var-
iances, Ye and Chen [21] introduce the random drift-volatility IG
process (RDV) model. It is given as YRDV ðtÞ � IGðμΛðtÞ; λμ2Λ2ðtÞÞ,
μ� TNðω; κ�2Þ, λ40. Similar to Section 3.2, the PDF of the RDV
model is obtained as

f RDV ðyjω; κ;ΛðtÞ; λÞ ¼
Z
μ40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λμ2Λ2ðtÞ
2πy3

s
exp �λðy�μΛðtÞÞ2

2y

" #
κϕ κðμ�ωÞ½ �
1�Φð�κωÞdμ

ð27Þ
The reliability function with failure threshold D for this model

is also given as

RRDV ðtjω; κ;ΛðtÞ; λÞ ¼
Z
μ40

Φ

ffiffiffiffi
λ

D

r
D�μΛðtÞð Þ

" #(

þe2λμΛðtÞΦ �
ffiffiffiffi
λ

D

r
DþμΛðtÞð Þ

" #)
κϕ κðμ�ωÞ½ �
1�Φð�κωÞdμ

ð28Þ
An intuitive description of the degradation paths simulated

from a RDV model is presented in Fig. 7. Since the random effects
are involved in the degradation mean and variance, these degra-
dation paths vary significantly. Both the degradation rates among
product population and the variance within specific unit are
embodied with random effects. This model is suitable for degrada-
tion modeling of products where significant product heterogeneity

is observed, such as the products subjected to different working
conditions or operation frequencies (e.g., [22]).

3.4.2. Bayesian analysis
Since random effects are introduced through parameter μ, the

Bayesian analysis of this RDV model is the same as the procedure
for RD model described in Section 3.2.2. The only difference is that
the likelihood function is given as

LRDV ðYRDV ;μjω; κ; θΛ; λÞ ¼∏n
i ¼ 1 gμðμijω; κ�2Þ∏mi

j ¼ 1f ðΔyijjμiΔΛij; λμ
2
i ΔΛ

2
ijÞ

n o
ð29Þ

where μ¼ ðμ1;…; μnÞ includes all the random parameters for the
degradation paths YRDV . The gμðμijω; κ�2Þ∏mi

j ¼ 1f ðΔyijjμiΔΛij; λμ
2
i ΔΛ

2
ijÞ

is the likelihood contribution of the ith degradation path YRDV ;i. It
is presented in Fig. 2 with f ðΔyijjμiΔΛij; λμ

2
i ΔΛ

2
ijÞ given as

f ðΔyijjθF ; θRi Þ, and gμðμijω; κ�2Þ given as πðθRi jθHÞ.
The joint posterior distribution and the corresponding poster-

ior inference and prediction with this model are obtained as

pðω; κ; θΛ; λ;μjYRDV ÞpπðωÞπðκÞπðθΛÞπðλÞLRDV YRDV ;μjω; κ; θΛ; λð Þ
pϕ bωðω�aωÞ
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ϕ bκðκ�aκÞ
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λδ�1expð�γλÞ�

∏
n

i ¼ 1

κϕ κðμi�ωÞ� �
1�Φð�κωÞ ∏

mi

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λμ2i ΔΛ

2
ij

q
exp �λðΔyij�μiΔΛijÞ2

2Δyij

" #( ) ð30Þ

RRDV tjYRDVð Þ ¼
Z
ω;κ;θΛ ;λ

RRDV tjω; κ;ΛðtÞ; λð Þp ω; κ; θΛ; λjYRDVð ÞdωdκdθΛdλ

ð31Þ

f RDVi;mþ1ðyjYRDV Þ ¼
Z
μi ;q;λ

f SðyjμiΛðtÞ; λμ2i Λ2ðtÞÞp μi; θΛ; λjYRDV
� �

dμidθΛdλ

ð32Þ
where f RDVi;mþ1ðyjYRDV Þ is the predicted PDF of degradation for the
ith product at time point ti;mþ1.

Similarly, the MCMC method and a simulation based integra-
tion strategy are used to obtain the relevant indexes in Eqs. (31)
and (32). The OpenBUGS code for this model can be constructed
from the one for the RD model by modifying the code for
parameters of the IG distribution.

4. Goodness-of-fit test

The inference of reliability and prediction of degradation are
based on the generated posterior samples of model parameters.
To present a reliable posterior analysis, it is necessary to test the
goodness-of-fit of relevant IG process models within the Bayesian
framework. Two simple graphical methods and two quantitative
methods have been introduced to implement goodness-of-fit test
for the IG process models by Wang and Xu [19] and Ye and Chen
[21]. In this subsection, we describe a model diagnostic approach
specified on the proposed Bayesian framework, which is based on
the posterior samples generated through the MCMC. This method
was delivered through the Bayesian χ2 goodness-of-fit test pro-
posed by Johnson [39]. A specific procedure for the RD model
introduced by Ye and Chen [21] was presented in our previous
study [27]. We then generalize this Bayesian χ2 goodness-of-fit
test for the IG process models by making the functions and
procedures applicable for all the IG modes in this section.

For degradation data YA ¼ YA;1;…;YA;n
� �

, the degradation
increments Δyij are independent samples from relevant IG dis-
tributions with CDF FAðyjθAÞ, where A stands for the relevant IG
process models described above and the parameters θA are the
same for these degradation increments. Let 0¼ a0oa1o⋯
oaK ¼ 1 denote K equally-spaced quantiles from a uniform
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Fig. 7. A simulated RDV model with threshold D¼ 40.
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distribution, and define pl ¼ al�al�1, l¼ 1;…;K and K �M0:4. M is
the total number of degradation increments in the degradation
data YA. The procedure of the Bayesian χ2 goodness-of-fit test is
described as follows.

a) Picking a generated random sample ~θA from the joint posterior
distribution pAðθAjYAÞ;

b) Calculating the number of degradation increments Δyij,
j¼ 1;…;mi, i¼ 1;…;n that fall into the interval al�1; al½ � with
al�1oFAðyijj ~θAÞral for all the K intervals as mlð ~θAÞ; l¼ 1;…;K;

c) Calculating the Bayesian χ2 test statistic for the random sample
~θA defined by

Sð ~θAÞ ¼ ∑
K

l ¼ 1

ðmlð ~θAÞ�MplÞ2
Mpl

ð33Þ

d) Repeating steps (a) to (c) for L times and calculating the
probability that Bp ¼ PrðSð ~θAÞoχ2K�1;0:95Þ with χ2K�1;0:95 denot-
ing the 0.95 quantile of a chi-square distribution with K�1
degrees of freedom. L is generally chosen as the number of
posterior samples generated by the MCMC.

The fitness of the model is calibrated by the probability Bp. It is
intuitively reported as that Bp% of the generated posterior samples
of parameters θA fit the data well. The higher this probability is,
the better the model fits the data sets and the more effective the
generated samples are used for posterior inference and prediction.

5. Simulation study

Let ðYA;i; Ti;miÞ, i¼ 1;…;n be random degradation paths gener-
ated from an IG process model described above. YA;i, Ti, and mi

separately denote the degradation data, observation time points, and
number of observation times for each degradation path. n is the
sample size of the degradation model. We let sample size n
separately equal to 5, 10, 15, 20, 30, 40, 50, 60, 80, and 100 to
generate a group of degradation paths with gradually increasing
populations. For each degradation path ðYA;i; Ti;miÞ in a population,
the number of observation time points mi is randomly chosen with
Prðmi ¼ kÞ ¼ 1=5 and kA 21;22;23;24;25f g. Then the observation
time points within Ti are created by randomly selecting mi different
points from Ct ¼ 0:4;0:8;1:2;…;10f g. Finally, the degradation data
YA;i are generated through sampling of degradation increases for
specific IG process as YAðtijÞ�YAðti;j�1Þ with ti;0 ¼ 0, YAðti;0Þ ¼ 0,
j¼ 1;…;mi, and i¼ 1;…;n. In addition, to facilitate the presentation
of the proposed Bayesian framework for the IG process models, we

assume ΛðtÞ ¼ tq with q40 as showed in Ye and Chen [21]. Various
patterns of degradation process can be modeled through this power
law function with different values of parameter q.

For the degradation data generated above, non-informative and
informative prior distributions are separately applied in the Baye-
sian analysis. Following the principle of indifference, non-
informative priors are given as uniform distribution with a large
interval [30]. The length of this large interval is chosen as ten times
of the true value of relevant parameters. For instance, the distribu-
tions ω�Uniformð0;20Þ, κ�Uniformð0;100Þ, q�Uniformð0;12Þ
and λ�Uniformð0;200Þ are chosen for the RDV model with para-
meters ω¼ 2, κ¼ 10, q¼ 1:2, and λ¼ 20. Informative prior distribu-
tions are given in the form presented in Section 3 for each IG
process model. Specifically, these prior distributions are obtained by
letting the means of these distributions equal to true values and
their variances equal to one quarter of true values of these
parameters. For instance, ω� TNð2;2�2Þ, κ� TNð10;0:4�2Þ,
q�Uniformð0:25;2:15Þ, and λ�Gammað16;0:8Þ are chosen for
the RDV IG process model with parameters ω¼ 2, κ¼ 10, q¼ 1:2,
and λ¼ 20. The prior distributions for other IG process models are
given in the same way as the RDV model described above.

For the implementation of MCMC through OpenBUGS, it takes a
certain number of iterations for samples generated from simulation
runs are representative of a certain distribution. In our numerical
analysis, we have used the practice of not using the first 5000
samples generated through simulation. Instead, the subsequent
10,000 samples are used. The convergence of every MCMC simula-
tion is monitored by a build-in toolkit in OpenBUGS, which is based
on the Gelman–Rubin ratio [40]. Based on these posterior samples
generated through the MCMC simulation, statistical summaries of
parameters are obtained. Considering the limitations of space, we
only present the results of the RDV model in Table 1 and Fig. 8 for
illustration.

Table 1 shows that parameters of the RDV model can be accurately
estimated by the proposed Bayesian method under reasonable sample
sizes. Fig. 8 describes the comparisons of estimation results between
different sample sizes and priors. It shows that both the increase of
sample size and the incorporation of informative priors can improve
the precision of estimations.

In particular, for the parameters ω, q, and λ when sample size
increases from five to fifty, the variances of estimations decrease a
lot. Similarly, the informative priors work well for these parameters
when sample size is small. However, for the parameter κ the
incorporation of informative prior exerts more significant influence
than the increase of sample size. In the scenario of non-informative
priors, the estimation results of parameter κ reach a reasonable
precision when sample size equals to forty. However, a sample size

Table 1
Estimated results of the RDV model with non-informative and informative priors. The true values of model parameters are ω¼ 2, κ ¼ 10, q¼ 1:2, and λ¼ 20.

Sample size Param. Non-informative priors Informative priors

Posterior Posterior probability intervals Posterior Posterior probability intervals

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

5 ω 2.15 0.136 1.88 2.433 2.011 0.027 1.762 2.3
κ 14.1 6.109 4.676 29.35 10.45 2.263 6.23 14.99
q 1.141 0.147 1.095 1.19 1.211 0.026 1.157 1.265
λ 15.8 2.497 12.58 22.37 17.1 2.388 12.14 19.83

50 ω 2.039 0.043 1.96 2.121 2.023 0.009 1.937 2.112
κ 8.811 4.192 6.462 11.94 9.635 1.629 7.29 12.51
q 1.194 0.04 1.177 1.211 1.194 0.008 1.177 1.212
λ 20.56 0.928 18.79 22.42 19.42 0.844 17.73 21.15

100 ω 2.003 0.029 1.936 2.071 2.011 0.006 1.954 2.068
κ 10.16 1.124 7.996 12.95 11.58 0.909 9.301 14.3
q 1.201 0.031 1.187 1.214 1.2 0.005 1.186 1.213
λ 20.07 0.643 18.82 21.35 19.8 0.655 18.6 21.05
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of twenty can achieve this precision under the situation of infor-
mative priors. The advantage of incorporating informative priors
can also be demonstrated on the rest of IG process models through
simulation study. Accordingly, the incorporating of prior informa-
tion can be an alternative of increasing sample size. The proposed
Bayesian analysis of IG process models enjoys a natural way of
incorporating subjective information through the framework
described above.

As described in Section 3, the inference of reliability and predic-
tion of degradation are obtained based on the samples generated by
the MCMC. The corresponding inference of reliability is presented in

Fig. 9. The prediction of the degradation YRDV ðtRDV ;mþ1jYÞ at time
point tRDV ;mþ1 ¼ 12 is presented in Fig. 10.

6. An illustrative example

A GaAs laser degradation dataset is used to demonstrate the
applicability of the proposed Bayesian method for degradation
analysis with IG process models. This dataset has been investi-
gated by Wang and Xu [19] and Ye and Chen [21] using the EM and
bootstrap based MLE. It has been demonstrated by them that
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Fig. 8. Boxplot of estimation results of the RDV model.
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neither the Wiener nor the gamma process fits this dataset well.
Moreover, the random drift IG process model introduced by Ye and
Chen [21] provides a good fit among other IG process models
introduced above. In this section, we further investigate this
dataset with the family of IG process models using the proposed
Bayesian method.

For a GaAs Laser device, light output will degrade as service
time increases. Increasing operating current may complement this
inherent degradation to maintain a constant light output. How-
ever, it will fail when this operating current crosses a predefined
threshold which it cannot bear. The degradation dataset describes
the increase of operating current over time for 15 GaAs laser
devices [2]. In detail, this dataset is presented in the form as
Yi; Ti;mið Þ, i¼ 1;…;n. The sample size n is 15. The observation time
points Ti are the same for all the samples with mi ¼ 16 and
Ti ¼ 0:25;0:5;0:75;…;4f g thousands hours for i¼ 1;…;15. The
degradation increases Δyij, i¼ 1;…;15, j¼ 1;…;16 which measure
the percentage increases in operating current are plotted in Fig. 11.
For specific data please refer to Table C.17 in Meeker and Escobar [2].

The IG process models described in Section 3 are applied to this
dataset using the proposed Bayesian method. From the semi-
parametric fitting in Wang and Xu [19] and parametric fitting in
Ye and Chen [21], the assumption ΛðtÞ ¼ tq; q40 is used as well in
this illustrative example. To obtain estimations which mainly
depend on the observed data, the non-informative prior distribu-
tions are adopted for the IG process models. Similar to the
simulation study, these non-informative priors are given in the
form of uniform distributions with relevant large intervals. These
intervals are determined based on the interpretations of these
parameters. For instance, parameter μ in the simple IG process

model is related to the degradation rate of a specific degradation
curve. A uniform distribution with the interval 0;100½ � is diffuse
enough to be chosen as a non-informative prior. It is because that
few degradation rates could be larger than 100 per observation
unit. Specific non-informative priors adopted in the case study are
presented together with the estimation results in Table 2.
The estimation results presented in Table 2 are summarized from
the generated posterior samples. These samples are obtained
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through the implementation of MCMC in OpenBUGS. For each
model, the first 5000 samples are discarded and the subsequent
10,000 samples are used.

The estimation results are comparable with the results
obtained using EM and bootstrap methods by Ye and Chen [21].
It indicates that the proposed Bayesian method is applicable for
degradation data analysis with IG process models. In addition,
estimation results of parameters δ and γ in RV model vary
significantly, which is similar to the results by Wang and Xu [19]
and Ye and Chen [21]. However, this significant diffuse of estima-
tion results can be reduced by incorporating prior information
about these parameter if available. Following the procedure given
in Section 3.3, we have the following prior distributions
δ�Gammað4;0:04Þ with mean 100 and standard deviance 50
and γ �Gammað4;2Þ with mean 2 and standard deviance 1. By
integrating these prior distributions with the observed degrada-
tion data set, the estimation confidence intervals of these para-
meters are obtained as [44.31, 193.2] for δ and [0.7542, 3.427] for γ.
This improvement of estimation results is mainly due to the
coherent integration of informative priors and degradation obser-
vations, where informative priors exert a significant effect on the
final results. It is critical for the situation that the degradation
observations are less informative for the parameters yet informa-
tive prior information is available. It is also an advantage of the
proposed Bayesian method for degradation analysis with IG
process models, which cannot be fulfilled with the EM and boot-
strap methods.

In addition, boxplots of the posterior densities of parameters with
random effects are presented in Fig. 12. A significant variation is
observed for the parameter μ both in the RD model and in the RDV
model. However, there is no obvious variation for the parameter λ in
the RVmodel. The variation of parameter μ among product population
is closely related to the variation of the degradation curves among the
GaAs Laser population as presented in Fig. 11. This can be ascribed to
the fact that the RD model and RDV model are suitable for the
degradation process where significant variation of degradation rate is
observed within a population. An intuitive selection of IG process
models can be carried out based on the representing of variation
among the GaAs Laser population.

The χ21 quantile–quantile (Q–Q) plot and the Bayesian χ2

goodness-of-fit test are implemented to select the best-fit IG
process model for the dataset. The χ21 Q–Q plots of the transformed
degradation increments are presented in Fig. 13. It suggests that the
RD model and the RDV model can present a relevant good fit to the
dataset. In addition, the Bayesian χ2 goodness-of-fit test is imple-
mented to the four IG process models based on the generated
posterior samples of relevant model parameters. The Bayesian χ2

goodness-of-fit test statistics are separately 0.9813 for the simple IG
process model, 1.00 for the RD model, 0.925 for the RV model, and
0.9947 for the RDV model. It indicates that nearly all the posterior
samples of the RD process model fit the dataset well. Accordingly,
the RD model is recommended both qualitative through the Q–Q
plot and quantitatively from a Bayesian perspective. It is consistent
with the conclusion obtained by Ye and Chen [21].

Since the RD model is chosen, the inference of reliability and
the prediction of degradation are obtained based on its generated
posterior samples through Eqs. (17) and (18). The inferences of
reliability are presented in Fig. 14. To investigate the sensitivity of
reliability to the threshold, four threshold levels are considered as
D¼ 6%;7%;8%; and 9%.

To demonstrate the flexibility of proposed Bayesian analysis for
degradation prediction in the scenario of condition monitoring, a
new degradation curve with limited observations is simulated and
the prediction of degradation is obtained. As described in Fig. 3,
the kernels of the posterior samples for model parameters of the
RD model obtained above are incorporated as the prior distribu-
tions for the Bayesian analysis of this newly generated degradation
data. The new degradation path is generated through Monte Carlo
simulation using parameters estimated in Table 2. Four observa-
tions are generated at time points 250, 500, 750, and 1000 h.
The prediction of degradation at time point 1250 h is obtained and
presented in Table 3.

Table 2
Estimation results of the IG process models with non-informative priors. The posterior mean and 95% posterior probability intervals, and the intervals of uniform prior
distributions are presented.

Simple model RD model

Mean 2.5% 97.5% Priors Mean 2.5% 97.5% Priors

μ 2.172 1.929 2.440 [0, 100] ω 2.189 1.882 2.512 [0, 100]
q 0.9672 0.9006 1.034 [0, 20] κ 2.374 1.460 3.545 [0, 100]
λ 0.9649 0.9112 1.021 [0, 20]

λ 0.1194 0.0931 0.1528 [0, 1000]
RV model RDV model

Mean 2.5% 97.5% Priors Mean 2.5% 97.5% Priors

δ 675.8 106.6 987.7 [0, 1000] ω 2.163 1.847 2.504 [0, 100]
γ 12.22 1.786 20.45 [0, 100] κ 2.198 1.352 3.278 [0, 100]
μ 2.146 1.908 2.406 [0, 100] q 0.9683 0.9131 1.025 [0, 20]
q 0.9746 0.9102 1.040 [0, 20] λ 19.29 15.44 23.55 [0, 1000]
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Fig. 12. Boxplot of the posterior densities of random parameters.
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7. Conclusions

This paper has systematically investigated the Bayesian method
for degradation analysis with IG process models. The Bayesian

analysis of degradation data with IG process models has various
interesting features. It serves as an indispensable alternative for
MLE-based degradation analysis with IG process models. It enjoys
a natural way of incorporating subjective information within the
degradation analysis, which is critical for the situation that
degradation observations are scarce. In addition, the hierarchical
specification of prior distributions makes the pooling of random
effects information implemented in a practical and coherent way.
Meanwhile, a simulation study has indicated that the incorpora-
tion of subjective information and the pooling of random effects
information among product population are alternatives of increas-
ing sample size. The flexibility of the proposed Bayesian degrada-
tion analysis with IG process models for on-line data analysis is
highlighted through a classical case study.

Nevertheless, there are some aspects worth further investiga-
tion. For example, the degradation analysis using the IG process
models with measurement errors is of interest for further study.
Moreover, this Bayesian analysis of degradation with IG process
model can be future applied to the fields highlighted in the
introduction section, which includes the field of reliability tests,
reliability analysis and fault prognostics.
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Table 3
Predicted degradation at time point 1250 h for newly generated degradation curve.

Newly generated degradation through MC Predicted degradation

Time (h) 250 500 750 1000 Mean SD 2.5% 97.5%
Degradation 0.461 1.276 1.921 2.362 2.660 0.584 1.497 3.831
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Appendix

Code script of random drift IG process model in OpenBUGS 
model{ 
#====Model Construction============================================================ 

for(i in 1 : nSample){                          # Sample size ’nSample’ of degradation data ‘Y’
# Specify truncated normal distribution for random parameter ‘mu[i]’ of each degradation path 

mu[i] ~ dnorm(mu.a, mu.tau)I(0, ) 
for(j in 2 : nTime[i]){    # Number of observations ‘nTime[i]’ for each degradation path ‘Y[i]’ 

# Calcualte degradation increment ‘deltaY[i, j]’ with degradaton data ‘Y[i, j]’
Y[i, j] - Y[i, j - 1]    

# Specify model parameters of IG distribution for  
# the degradation increment with the assumption ‘Lambda(t) = t^q’

t[i, j], q) - pow(t[i, j-1], q)            # Observation time point ’t[i, j]’

lambda * pow(deltaLambda[i, j], 2)    
    # Specify IG distributions for the degradation increment

deltaY[i, j] <-

deltaLambda[i, j] <- pow(
a[i, j] <- mu[i] * deltaLambda[i, j]
b[i, j] <- pow(mu[i], 3) / 
deltaY[i, j] ~ dinv.gauss(a[i, j], b[i, j])

} 
}

#====Prior Specification============================================================= 
# Non-informative prior distributions in the form of  

# uniform distributions with large intervals
mu.a ~ dunif(0, 100); mu.b ~ dunif(0, 100); mu.tau <- pow(mu.b, 2); # Priors for hyper-parameters
q ~ dunif(0, 20); lambda ~ dunif(0, 1000)                        # Priors for model parameters

}
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