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a b s t r a c t 

With the increasing complexity and size of modern advanced engineering systems, the traditional reliability 
theory cannot characterize and quantify the complex characteristics of complex systems, such as multi-state 
properties, epistemic uncertainties, common cause failures (CCFs). This paper focuses on the reliability analysis 
of complex multi-state system (MSS) with epistemic uncertainty and CCFs. Based on the Bayesian network (BN) 
method for reliability analysis of MSS, the Dempster-Shafer (DS) evidence theory is used to express the epistemic 
uncertainty in system through the state space reconstruction of MSS, and an uncertain state used to express the 
epistemic uncertainty is introduced in the new state space. The integration of evidence theory with BN which 
called evidential network (EN) is achieved by adapting and updating the conditional probability tables (CPTs) 
into conditional mass tables (CMTs). When multiple CCF groups (CCFGs) are considered in complex redundant 
system, a modified 𝛽 factor parametric model is introduced to model the CCF in system. An EN method is proposed 
for the reliability analysis and evaluation of complex MSSs in this paper. The reliability analysis of servo feeding 
control system for CNC heavy-duty horizontal lathes (HDHLs) by this proposed method has shown that CCFs 
have considerable impact on system reliability. The presented method has high computational efficiency, and the 
computational accuracy is also verified. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The multi-state system (MSS) was firstly proposed by Barlow and
u, it has been proved that lots of industrial systems belong to MSS,

uch as electrical power system, pipe transmission system, production
nd manufacturing system, aerospace system [1–3] . Those systems can
efine the multi-state characteristics of components accurately by ana-
yzing the system failure process and tracking the effect of the change of
omponent performance on the system reliability. There are four types
f methods used for reliability analysis of MSS, including multi-state
ault tree method [4] , Markov process method [5,6] , Monte-Carlo sim-
lation (MCS) method [7,8] and universal generating function (UGF)
ethod [9,10] . The MSS plays a critical role in the reliability analysis

nd assessment of complex system and also has broad application fore-
round. 

The uncertainty caused by lack of data and scarcity of informa-
ion is one of the most challenging issues in MSS reliability analysis.

hen the system state performances and state probabilities cannot be
xactly defined and obtained, sometimes the bounds of system states
∗ Corresponding author. 
E-mail addresses: yanfengli@uestc.edu.cn (Y.-F. Li), hzhuang@uestc.edu.cn (H.-Z.

ttps://doi.org/10.1016/j.ress.2018.02.021 
eceived 7 December 2016; Received in revised form 14 February 2018; Accepted 14 February
vailable online 16 February 2018 
951-8320/© 2018 Elsevier Ltd. All rights reserved. 
nd state probabilities can be expressed by some linguistic forms. Then
he probability based methods are no longer applicable to this kind
f system. Some non-probabilistic methods are developed, including
empster-Shafer evidence theory (DSET) [11] , fuzzy theory [12–15] ,
robability-box [16–18] , interval theory [19] , possibility theory [20] ,
ayesian method [21] , etc. The DS evidence theory has a flexible ax-

omatic system to describe uncertainty, and also has an independent
rame to process uncertainty in system [22,23] . It has been widely used
or uncertainty modeling, quantification, reasoning and mitigation in
eliability engineering [24–26] . 

Bayesian network (BN) has been widely used in reliability and safety
nalysis because of its obvious advantages in multi-state and non-
eterministic fault logic description [27–29] . Evidence theory allows
n analyst to distribute the probability mass in overlapping regions of
he sample space, which is useful when there are significant uncertainty
nd conflicting evidence. There are many researches on BN based on
vidence theory. Simon et al. [30,31] analyzed reliability of complex
ystem with epistemic uncertainty by using of BN, where evidence the-
ry is used to quantify system uncertainty. Then the evidential networks
 Huang). 

 2018 

https://doi.org/10.1016/j.ress.2018.02.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2018.02.021&domain=pdf
mailto:yanfengli@uestc.edu.cn
mailto:hzhuang@uestc.edu.cn
https://doi.org/10.1016/j.ress.2018.02.021


J. Mi et al. Reliability Engineering and System Safety 174 (2018) 71–81 

Fig. 1. A sample multi-state BN. 
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ENs) also have been used for the reliability and performance evalua-
ion of system with imprecise knowledge [32] . Zhao et al. [33] studied
he influence of incomplete original parameters and subjective param-
ters on the reliability of distribution system by using BN and evidence
heory. Simon et al. [31] developed the combination method of BN and
vidence theory for reliability analysis of multi-state system (MSS). De-
ailed illustrations of the concepts of EN and its application have been
iven in [34] . It is shown that evidence theory can handle the imprecise
nformation in system and get more useful information than interval
nalysis method. 

This paper introduces a multi-state EN method for reliability analysis
f complex system with CCFGs based on evidence theory and BN. The
emaining of this paper is organized as follows. In Section 2 , the node
efinition and network reasoning of multi-state EN are introduced. In
ection 3 , when the multiple CCF groups (CCFGs) are considered in com-
lex redundant system, a modified 𝛽 factor parametric model is intro-
uced to model the CCF in system. This comprehensive method is used
o analyze the reliability of an example system and a feeding control
ystem of CNC heavy-duty horizontal lath (HDHL) in Section 4 . Finally,
onclusions are drawn in Section 5 . 

. Multi-state evidential network 

.1. The node definition of multi-state evidential network 

For a sample BN with three nodes shown in Fig. 1 , it is assumed that
he nodes x 1 and x 2 are three state nodes, the state space is Λ = {0 , 1 , 2} .

here 𝑥 𝑖 = 0 , 1 , 2 represent the success, partial failure and complete
ailure of the corresponding component. When the epistemic uncer-
ainty exists in system, an added state 𝑥 𝑖 = [0 , 1 , 2] is defined to rep-
esent the uncertain state of node x i . Then the frame of discernment
 = {0 , 1 , 2 , [0 , 1 , 2]} is defined under evidence theory, and the basic
ass assignment (BMA) which corresponding to basic probability as-

ignment (BPA) in BN is m : 2 D → [0, 1], its power set can be expressed
s 

 

𝐷 = 

{
𝑚 

(
𝑥 = ∅

)
= 0; 𝑚 ( 𝑥 = 0 ) ; 𝑚 ( 𝑥 = 1 ) ; 𝑚 ( 𝑥 = 2 ) ; 𝑚 ( 𝑥 = [ 0 , 1 , 2 ] ) } . (1)

For an event 𝐴 ∶ { 𝑥 = 0} on the frame of discernment D , and B ⊆A ,
hen the belief function of event A is 

 𝑒𝑙 ( 𝐴 ) = 

∑
𝐵⊆𝐴 

𝑚 ( 𝐵 ) = 𝑚 ( 𝑥 = 0 ) . (2)

Eq. (2) represents the belief degree (the measure of belief) of event
 ∶ 𝑥 = 0 . It is the lower bound of belief interval when the probability
f uncertain information is not counted in the BMA [31] . Based on the
efinition of plausibility function, the plausibility function of event A
an be gotten by 

 𝑙 ( 𝐴 ) = 

∑
𝐵∩𝐴 ≠∅

𝑚 ( 𝐵 ) = 𝑚 { 𝑥 = 0 } + 𝑚 { 𝑥 = [ 0 , 1 , 2 ] } . (3)

Accordingly, the interval probability of event A can be calculated
y Eqs. (2) and (3) , and it can be expressed as [ 𝑃 ]( 𝐴 ) = [ 𝐵𝑒𝑙 ( 𝐴 ) , 𝑃 𝑙 ( 𝐴 )] .
imilarly, the interval probabilities of other nonempty events under the
rame of discernment D can be computed as well. 

When the corresponding components of nodes x 1 and x 2 are parallel
r series, the conditional probability table (CPT) of node y under evi-
ence theory can be derived and transformed into conditional mass table
72 
CMT). Then the belief reliability of node y : 𝐵𝑒𝑙( 𝑦 = 0) can be obtained
y BN reasoning as 

 𝑒𝑙 ( 𝑦 = 0 ) = 

∑
𝑥 1 , 𝑥 2 

𝐵 𝑒𝑙 
(
𝑦 = 0 ||𝑥 1 , 𝑥 2 )𝐵 𝑒𝑙 

(
𝑥 1 
)
𝐵 𝑒𝑙 

(
𝑥 2 
)
. (4)

The plausibility reliability 𝑃 𝑙( 𝑦 = 0) is 

 𝑙 ( 𝑦 = 0 ) = 

∑
𝑥 1 , 𝑥 2 

𝑃 𝑙 
(
𝑦 = 0 ||𝑥 1 , 𝑥 2 )𝑃 𝑙 (𝑥 1 )𝑃 𝑙 (𝑥 2 ). (5)

The actual reliability of node y : 𝑃 ( 𝑦 = 0) will belongs to interval
 𝐵𝑒𝑙( 𝑦 = 0) , 𝑃 𝑙( 𝑦 = 0)] . 

.2. The multi-state evidential network reasoning 

In order to use BN with the evidence theory, there should be an adap-
ion in the transformation of the CPTs into CMTs. For a multi-state EN
ith n root nodes x 1 , x 2 , ⋅⋅⋅, x n , and the leaf node which represents the
nal statement of system is denoted as y , the state number of the i th root
ode x i and leaf node y are l i and l y , respectively. The relation between
he state probability of leaf node y and root nodes can be expressed as 

 

(
𝑦 = 𝑦 𝑗 

|||𝑥 1 = 𝑥 
𝑘 1 
1 , ⋯ , 𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

)
= 

𝑃 
(
𝑦 = 𝑦 𝑗 , 𝑥 1 = 𝑥 

𝑘 1 
1 , ⋯ , 𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

)
𝑃 
(
𝑥 1 = 𝑥 

𝑘 1 
1 , ⋯ , 𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

) , 

(6) 

here 1 ≤ j ≤ k y , 1 ≤ i ≤ n and 1 ≤ k i ≤ l i . Suppose that the interval prob-
bility of node x i at state k i is 

 𝑃 ] 
(
𝑥 𝑖 = 𝑥 

𝑘 𝑖 
𝑖 

)
= 

[
𝐵𝑒𝑙 

(
𝑥 
𝑘 𝑖 
𝑖 

)
, 𝑃 𝑙 

(
𝑥 
𝑘 𝑖 
𝑖 

)]
, (7)

here 𝐵𝑒𝑙( 𝑥 𝑘 𝑖 
𝑖 
) and 𝑃 𝑙( 𝑥 𝑘 𝑖 

𝑖 
) can be calculated by the CMT of those nodes.

The conditional probability of non-leaf node y of EN is 

 𝑃 ] 
(
𝑦 = 𝑦 𝑗 

|||𝑥 1 = 𝑥 
𝑘 1 
1 , ⋯ , 𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

)
= 

[
𝐵𝑒𝑙 

(
𝑦 𝑗 
)
, 𝑃 𝑙 

(
𝑦 𝑗 
)]
. (8)

The probability of node y on j th state can be gotten by 

 

(
𝑦 = 𝑦 𝑗 

)
= 𝑃 

(
𝑦 = 𝑦 𝑗 

|||𝑥 1 = 𝑥 
𝑘 1 
1 , ⋯ , 𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

)
𝑃 
(
𝑥 1 = 𝑥 

𝑘 1 
1 

)
⋯ 𝑃 

(
𝑥 𝑛 = 𝑥 

𝑘 𝑛 
𝑛 

)
. 

(9) 

Based on the former reasoning method, the probability of leaf node
 = 𝑇 𝑣 can be expressed as 

 𝑃 ] 
(
𝑇 = 𝑇 𝑣 

)
= 

[
𝐵𝑒𝑙 

(
𝑇 = 𝑇 𝑣 

)
, 𝑃 𝑙 

(
𝑇 = 𝑇 𝑣 

)]
, (10)

here the lower bound 𝐵𝑒𝑙( 𝑇 = 𝑇 𝑣 ) is the belief probability and can be
alculated by 

𝑒𝑙 
(
𝑇 = 𝑇 𝑣 

)
= 

∑
𝑥 1 , ⋯ , 𝑥 𝑛 , 𝑦 1 , ⋯ , 𝑦 𝑚 

𝐵𝑒𝑙 
(
𝑥 1 , ⋯ , 𝑥 𝑛 , 𝑦 1 , ⋯ , 𝑦 𝑚 , 𝑇 = 𝑇 𝑣 

)
= 

∑
𝜋( 𝑇 ) 

𝐵𝑒𝑙 
(
𝑇 = 𝑇 𝑣 |𝜋( 𝑇 ) ) 𝑚 ∏

𝑗=1 

∑
𝜋( 𝑦 1 ) 

𝐵𝑒𝑙 
(
𝑦 𝑗 
|||𝜋(𝑦 𝑗 )) 𝑛 ∏

𝑖 =1 
𝐵𝑒𝑙 

(
𝑥 
𝑘 𝑖 
𝑖 

)
= 

∑
𝜋( 𝑇 ) 

𝐵 𝑒𝑙 
(
𝑇 = 𝑇 𝑣 |𝜋( 𝑇 ) ) ∑

𝜋( 𝑦 1 ) 
𝐵 𝑒𝑙 

(
𝑦 1 
|||𝜋(𝑦 1 )) ×⋯ 

×
∑
𝜋( 𝑦 𝑚 ) 

𝐵𝑒𝑙 
(
𝑦 𝑚 

|||𝜋(𝑦 𝑚 )) ×⋯ × 𝐵𝑒𝑙 
(
𝑥 1 = 𝑥 1 , 𝑘 1 

)
×⋯ × 𝐵𝑒𝑙 

(
𝑥 𝑛 = 𝑥 𝑛, 𝑘 𝑛 

)
. (11) 

The upper bound 𝑃 𝑙( 𝑇 = 𝑇 𝑣 ) is the plausibility probability and can
e computed by 

 𝑙 
(
𝑇 = 𝑇 𝑣 

)
= 

∑
𝑥 1 , ⋯ , 𝑥 𝑛 , 𝑦 1 , ⋯ , 𝑦 𝑚 

𝑃 𝑙 
(
𝑥 1 , ⋯ , 𝑥 𝑛 , 𝑦 1 , ⋯ , 𝑦 𝑚 , 𝑇 = 𝑇 𝑣 

)
= 

∑
𝜋( 𝑇 ) 

𝑃 𝑙 
(
𝑇 = 𝑇 𝑣 |𝜋( 𝑇 ) ) 𝑚 ∏

𝑗=1 

∑
𝜋( 𝑦 1 ) 

𝑃 𝑙 
(
𝑦 𝑗 
|||𝜋(𝑦 𝑗 )) 𝑛 ∏

𝑖 =1 
𝑃 𝑙 

(
𝑥 
𝑘 𝑖 
𝑖 

)
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Fig. 2. Case Bayesian network. 

Table 1 

The state probabilities of root nodes. 

Node 0 1 2 [0,1,2] 

B i 1 0.9991 1.7 ×10 − 4 2.5 ×10 − 4 4.8 ×10 − 4 

B i 2 0.9989 – 6.3 ×10 − 4 4.7 ×10 − 4 

B i 3 0.9986 3.1 ×10 − 4 5.4 ×10 − 4 5.5 ×10 − 4 
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Table 2 

CMT of non-leaf nodes A 1 and A 2 . 

b 11 , b 21 b 12 , b 22 b 13 , b 23 a 1 , a 2 

Bel Pl 

0 1 2 0 1 2 

0 0 0 1 0 0 1 0 0 
0 0 1 0 1 0 0 1 0 
0 0 2 0 0 1 0 0 1 
0 0 [0,1,2] 0 0 0 1 1 1 
0 2 0 0 0 1 0 0 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
[0,1,2] [0,1,2] 2 0 0 1 0 0 1 
[0,1,2] [0,1,2] [0,1,2] 0 0 0 1 1 1 

Table 3 

CPT of leaf node X. 

a 1 a 2 x 

0 1 2 

0 0 1 0 0 
0 1 1 0 0 
0 2 1 0 0 
1 0 1 0 0 
1 1 0 1 0 
1 2 0 1 0 
2 0 1 0 0 
2 1 0 1 0 
2 2 0 0 1 

Fig. 3. The evolved evidential network. 

Table 4 

The belief and plausibility marginal probabilities of non-leaf nodes 
A 1 and A 2 . 

Non-leaf nodes State Bel Pl 

A 1 , A 2 0 0.996604 0.998101 
1 4.790082 ×10 − 4 1.976844 ×10 − 3 

2 1.419367 ×10 − 3 2.917203 ×10 − 3 

3  

b
 

a  

l  

s

= 

∑
𝜋( 𝑇 ) 

𝑃 𝑙 
(
𝑇 = 𝑇 𝑣 |𝜋( 𝑇 ) ) ∑

𝜋( 𝑦 1 ) 
𝑃 𝑙 

(
𝑦 1 
|||𝜋(𝑦 1 )) ×⋯ 

×
∑
𝜋( 𝑦 𝑚 ) 

𝑃 𝑙 
(
𝑦 𝑚 

|||𝜋(𝑦 𝑚 )) ×⋯ × 𝑃 𝑙 
(
𝑥 1 = 𝑥 1 , 𝑘 1 

)
×⋯ × 𝑃 𝑙 

(
𝑥 𝑛 = 𝑥 𝑛, 𝑘 𝑛 

)
. (12) 

The probability of leaf node can be obtained by the former forward
easoning of BN, the posterior probability of root nodes can be deduced
y backward reasoning. When 𝑇 = 𝑇 𝑣 , the posterior probability of root
ode 𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 can be computed by 

 𝑃 ] 
(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

)
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
min 

(
𝐵𝑒𝑙 

(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

)
, 𝑃 𝑙 

(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

))
, 

max 
(
𝐵𝑒𝑙 

(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

)
, 𝑃 𝑙 

(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

))⎤ ⎥ ⎥ ⎥ ⎦ , (13) 

here 

 𝑒𝑙 
(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

)
= 

𝐵 𝑒𝑙 
(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 , 𝑇 = 𝑇 𝑣 

)
𝐵 𝑒𝑙 

(
𝑇 = 𝑇 𝑣 

) , (14)

 𝑙 
(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 

||𝑇 = 𝑇 𝑣 

)
= 

𝑃 𝑙 
(
𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 , 𝑇 = 𝑇 𝑣 

)
𝑃 𝑙 

(
𝑇 = 𝑇 𝑣 

) , (15)

here 𝐵𝑒𝑙( 𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 , 𝑇 = 𝑇 𝑣 ) and 𝑃 𝑙( 𝑥 𝑖 = 𝑥 𝑖, 𝑘 𝑖 , 𝑇 = 𝑇 𝑣 ) are the belief and
lausibility joint probability of root nodes and leaf node. The root nodes
nd leaf node of EN reflect the fault causes and fault state properties
f system. Therefore, the system state probability can be computed by
orward reasoning of EN, which also realizes a quantitative description
f system fault states. The backward reasoning of EN can estimate the
osterior probability of fault causes based on system failure state, and
lso can implement the system failure prediction and judgment. The
atter possesses certain guiding significance for improving the reliability
f a complex system. 

.3. Introductory example 

An example multi-state BN from Ref. [35] is employed by this paper
s shown in Fig. 2 . Based on the state definition method in Section 2.1 ,
he fourth state [0, 1, 2] is used to describe the uncertainty for each root
odes in the presence of reliability uncertainty. The state probabilities
f root nodes are listed in Table 1 . And the CMT of non-leaf nodes A 1 
nd A are shown in Table 2 . Since the non-leaf nodes A and A have
2 1 2 

73 
 certain states, the CPT of leaf node X is shown in Table 3 . The EN will
e evolved as Fig. 3 . 

Based on the EN reasoning method in Section 2.2 , the marginal prob-
bility distribution of non-leaf nodes A 1 and A 2 can be computed and
isted in Table 4 . The state probabilities of leaf node X is obtained and
hown in Table 5 . 
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Table 5 

The state probabilities of leaf node X . 

Non-leaf nodes State Bel Pl 

X 0 0.997003 0.999976 
1 1.589226 ×10 − 6 1.534954 ×10 − 5 

2 2.014604 ×10 − 6 8.459324 ×10 − 6 

Fig. 4. Fault tree explicit modeling method for component with CCF. 
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The mid-value of interval probability of root nodes are chosen as the
nputs of EN, the probability distribution of leaf node can be computed
nd 

 ( 𝑋 = 0) = 0 . 999995 

 ( 𝑋 = 1) = 2 . 275775 × 10 − 6 

 ( 𝑋 = 2) = 2 . 557409 × 10 − 6 . (16)

Comparing the results of Eq. (16) with Table 5 , it can be found that
he precise state probability of leaf node X is located between the belief
robability and the plausibility probability gotten by the introduced ev-
dence theory based method. This indicates that the result obtained by
his method is correct and effective. 

. Reliability modeling of system with multiple CCFGs 

.1. A modified 𝛽 factor model for common cause failure groups 

Considering the dependent failure caused by interior physical inter-
ctions of components and human interactions in system, the 𝛽 factor
arametric model [36] has been widely used for such cases. Assume
hat P t is the total failure probability of a component; it can be expanded
nto an independent contribution P ind and a dependent contribution P ccf ,
hich are functions of time t respectively. When the component is as-

umed to follow the exponential distribution, 𝜆t , 𝜆ind and 𝜆ccf are the
ailure rates of entire system, independent part, and the dependent part
espectively. Then parameter 𝛽 can be defined as the fraction of the total
ailure probability attributable to dependent failures [35,36] , and can
e mathematically described as 

= 

𝑃 𝑐 𝑐 𝑓 

𝑃 𝑡 
= 

𝑃 𝑐 𝑐 𝑓 

𝑃 𝑖𝑛𝑑 + 𝑃 𝑐 𝑐 𝑓 
= 

(1 − exp (− 𝜆𝑐 𝑐 𝑓 ⋅ 𝑡 )) 
(1 − exp (− 𝜆𝑡 ⋅ 𝑡 )) 

= 

(1 − exp (− 𝜆𝑐 𝑐 𝑓 ⋅ 𝑡 )) 
(1 − exp (− 𝜆𝑖𝑛𝑑 ⋅ 𝑡 )) + (1 − exp (− 𝜆𝑐 𝑐 𝑓 ⋅ 𝑡 )) 

. (17)

The value of 𝛽-factor can be obtained by the direct use of field data
nd experts ’ experience [35–37] . 

In order to present how the 𝛽 factor model works, a simple deduction
s performed for a single component within the FTA model. For a paral-
el system with two identical components, and 𝑃 ( 𝐴 1 ) = 𝑃 ( 𝐴 2 ) = 𝑃 𝐴 , the
ailure probability of system can be computed as: 

 𝑠𝑦𝑠 = 𝑃 
(
𝐴 1 

)
𝑃 
(
𝐴 2 

)
= 𝑃 2 

𝐴 
(18)

For the basic component A , as shown in Fig. 4 , the failure probability
f A can be divided into two proportions: independent part and CCF part,
74 
nd it can be expressed as 

 𝐴 = 𝑃 𝐴 _ 𝑖𝑛𝑑 + 𝑃 𝐴 _ 𝑐 𝑐 𝑓 (19)

And the CCF part, the failure probability is 

 𝐴 _ 𝑐 𝑐 𝑓 = 𝛽𝑃 𝐴 (20)

By using the former explicit modeling method, the failure probabil-
ties of component A 1 and A 2 are both divided into independent part
nd CCF part. Then based on the standard 𝛽-factor model and Eq. (17) ,
he probability of CCF part can be obtained and 𝑃 𝐴 1 _ 𝑐 𝑐 𝑓 = 𝑃 𝐴 2 _ 𝑐 𝑐 𝑓 = 𝛽𝑃 𝐴 .
he parallel system with two components also can be further expressed
s Fig. 5 ( a ). The system failure event Sys can be simplified by using
oolean algebra operation rules and expressed as 

𝑦𝑠 = 𝐴 1 𝐴 2 = 

(
𝐴 1 _ 𝑖𝑛𝑑 + 𝐴 1 _ 𝑐 𝑐 𝑓 

)(
𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 2 _ 𝑐 𝑐 𝑓 

)
= 

(
𝐴 1 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 

)(
𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 

)
= 𝐴 1 _ 𝑖𝑛𝑑 ⋅ 𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 ⋅

(
𝐴 _ 𝑐 𝑐 𝑓 + 𝐴 1 _ 𝑖𝑛𝑑 + 𝐴 2 _ 𝑖𝑛𝑑 

)
= 𝐴 1 _ 𝑖𝑛𝑑 ⋅ 𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 ⋅ 𝐴 _ 𝑐 𝑐 𝑓 

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐴 _ 𝑐 𝑐 𝑓 

+ 𝐴 _ 𝑐 𝑐 𝑓 ⋅ 𝐴 1 _ 𝑖𝑛𝑑 
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

0 

+ 𝐴 _ 𝑐 𝑐 𝑓 ⋅ 𝐴 2 _ 𝑖𝑛𝑑 
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

0 

= 𝐴 1 _ 𝑖𝑛𝑑 ⋅ 𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 (21) 

Finally, the system with consideration of CCF can be simplified and
hown as Fig. 5 ( b ). 

Then the failure probability of system can be obtained by
q. (21) and 

 ( 𝑆𝑦𝑠 ) = 𝑃 
(
𝐴 1 _ 𝑖𝑛𝑑 ⋅ 𝐴 2 _ 𝑖𝑛𝑑 + 𝐴 _ 𝑐 𝑐 𝑓 

)
= 𝑃 

(
𝐴 1 _ 𝑖𝑛𝑑 

)
⋅ 𝑃 

(
𝐴 2 _ 𝑖𝑛𝑑 

)
+ 𝑃 ( 𝐴 _ 𝑐 𝑐 𝑓 ) 

= ( 1 − 𝛽) 𝑃 ( 𝐴 ) ⋅ ( 1 − 𝛽) 𝑃 ( 𝐴 ) + 𝛽𝑃 ( 𝐴 ) (22) 

When a single component fails simultaneously within multiple
CFGs [37,38] , a modified 𝛽 factor parametric model is used to express
he coupling mechanism. The explicit modeling of component A with
ultiple CCFGs is shown in Fig. 6 . 

The failure probability of component A is then given as 

 ( 𝐴 ) = 𝑃 ( 𝐴 _ 𝑖𝑛𝑑 ) + 𝑃 ( 𝐴 _ 𝑐 𝑐 𝑓 ) 
= 𝑃 ( 𝐴 _ 𝑖𝑛𝑑 ) + 𝑃 

(
𝐴 _ 𝐶 𝐶 𝐹 𝐺 1 ∪⋯ ∪ 𝐴 _ 𝐶 𝐶 𝐹 𝐺 𝑘 

)
= 𝑃 ( 𝐴 _ 𝑖𝑛𝑑 ) + 𝑃 

(
𝐴 _ 𝐶 𝐶 𝐹 𝐺 1 

)
+ ⋯ 𝑃 

(
𝐴 _ 𝐶 𝐶 𝐹 𝐺 𝑘 

)
(23) 

In this way, the failure probability of component A is divided into
CF parts and independent part as follow 

 𝐴 _ 𝑐 𝑐 𝑓 = 𝑃 𝐴 _ 𝐶 𝐶 𝐹 𝐺 1 + 𝑃 𝐴 _ 𝐶 𝐶 𝐹 𝐺 2 + ⋯ + 𝑃 𝐴 _ 𝐶 𝐶 𝐹 𝐺 𝑘 

= 𝛽1 𝑃 𝐴 + 𝛽2 𝑃 𝐴 + ⋯ + 𝛽𝑘 𝑃 𝐴 = 𝑃 𝐴 

𝑘 ∑
𝑖 =1 

𝛽𝑖 (24) 

 𝐴 _ 𝑖𝑛𝑑 = 

( 

1 − 

𝑘 ∑
𝑖 =1 

𝛽𝑖 

) 

𝑃 𝐴 (25)

.2. Model limitation and solution 

Because the 𝛽- factors are obtained by expert judgments, there ex-
sts the limitation of this modified 𝛽 factor parametric model for
 𝛽1 + 𝛽2 + ⋯ + 𝛽𝑘 ) > 1 . In this case, the failure probability of CCF part
s larger than the probability of total components. To cope with this
imitation in this model, a proportional reduction factor (PRF) method
37,38] is applied in this paper. The PRF factor is defined as 

RF = 

1 ∑𝑘 
𝑗=1 𝛽𝑗 

(26)

Then a set of new reduced 𝛽 factor are generated as 

= 

[
𝛽′1 , 𝛽

′
2 , ⋯ , 𝛽′𝑘 

]
= PRF 

[
𝛽1 , 𝛽2 , ⋯ , 𝛽𝑘 

]
. (27)
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Fig. 5. (a) Fault tree of two components parallel system with CCF; (b) Simplify fault tree of system. 

Fig. 6. Explicit modeling of multiple CCFGs within fault tree. 
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Fig. 7. BN node with CCFGs. 
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In this way, the failure probability of CCF parts and independent part
re rewritten as 

 𝐴 _ 𝑐 𝑐 𝑓 = 𝑃 𝐴 

𝑘 ∑
𝑖 =1 

𝛽′𝑖 (28) 

 𝐴 _ 𝑖𝑛𝑑 = 

( 

1 − 

𝑘 ∑
𝑖 =1 

𝛽′𝑖 

) 

𝑃 𝐴 = 0 (29)

The essence of the PRF method is an equilibrium process of the ac-
umulated common cause parts on 𝛽 factor, which has weaken the con-
radiction of the common cause part beyond the total failure probability
o some extent. And the PRF method is just one of the methods which
an be used to solve this kind of logical contradiction; any other method
apable of dealing with such contradictions may be applicable. 

.3. The Bayesian network node with CCFGs 

When CCFs is considered in system reliability modeling, the failure
f system can be divided into independent part and CCF part. The inde-
endent part means the failure of system caused a single cause. The CCF
art represents the simultaneous failure of multiple components which
aused by a common coupling mechanism, then those components con-
titute a CCFG. For component A which exists in multiple CCFGs that
enoted as CCFG 1 , CCFG 2 , ⋅⋅⋅, CCFG k , by using the fault tree explicit
odeling of multiple CCFGs in Section 3.2 and translate the fault tree

nto BN, as shown in Fig. 7 . 
When the independent failure probability of node A is P ( A ind ), the

orresponding 𝛽 factors of common cause nodes are 𝛽1 , 𝛽2 , ⋅⋅⋅, 𝛽k . When
 𝛽 + 𝛽 + ⋯ + 𝛽 ) < 1 , the failure probability of node A can be calcu-
1 2 𝑘 

75 
ated by Eqs. (22) –(26) and 

 

′( 𝐴 ) = 𝑃 
(
𝐴 𝑖𝑛𝑑 

)
+ 𝑃 

(
𝐴 𝑐 𝑐 𝑓 

)
= 𝑃 

(
𝐴 𝑖𝑛𝑑 

)
+ 

𝑘 ∑
𝑖 =1 
𝛽𝑖 

1 − 

𝑘 ∑
𝑖 =1 
𝛽𝑖 

𝑃 
(
𝐴 𝑖𝑛𝑑 

)

= 

1 

1 − 

𝑘 ∑
𝑖 =1 
𝛽𝑖 

𝑃 
(
𝐴 𝑖𝑛𝑑 

)
(30) 

When the sum of 𝛽 factors is larger than 1, that is ( 𝛽1 + 𝛽2 + ⋯ + 𝛽𝑘 ) >
 , by using the PRF method in Section 3.2 , the failure probability of node
 can be computed by Eqs. (26) –(29) and 

 

′( 𝐴 ) = 𝑃 ′
𝐴 _ 𝑐 𝑐 𝑓 + 𝑃 ′

𝐴 _ 𝑖𝑛𝑑 = 𝑃 𝐴 

𝑘 ∑
𝑖 =1 

𝛽′𝑖 + 0 = 𝑃 𝐴 ⋅ 𝑃 𝑅𝐹 ⋅
𝑘 ∑
𝑖 =1 

𝛽𝑖 . (31)

. Reliability analysis of feeding control system for CNC HDHLs 

ith multiple CCFGs 

.1. Fault tree modeling of feeding control system 

The lathes are basic machine tools for manufacturing cylindrical
arts. In recent years, the DL series computer numerical control (CNC)
eavy-duty horizontal lathes (HDHLs) have been widely used in the
ransportation, energy, and aviation industries. High availability of the
NC HDHL is required to maximize the efficiency and benefit of these
anufacturing industries [37] . The DL series horizontal lathes are com-
uter numerical control (CNC) types which are used for the turning op-
ration of rotational parts with outside and inside surface, such as axles
nd disc, and have the following work axes: X axis of tool head lateral
ovement, Z axis of tool head longitudinal movement, U 1 axis of left

ang tool movement and U axis of right gang tool movement. Fig. 8
2 
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Fig. 8. Functional block diagram of electrical control and drive system for the DL series CNC HDHL. 

Fig. 9. Fault tree model of the feeding control system. 
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Table 6 

The failure rates and failure probabilities of components. 

Code Failure rate 𝜆( ×10 − 6 /h) Failure probability ( t = 3000 h) 

MO 0.2 0.0006 
EW 0.6 0.0018 
GR 2 0.0060 
MT 7 0.0208 
SF 0.5 0.0015 
RE 2 0.0060 
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m

 

 

 

 

 

 

 

 

 

 

𝑡

hows the functional block diagram of the electrical control and drive
ystem for such DL series horizontal lathes. The feeding control system
nclude three subsystems: X, Z , as well as U 1 and U 2 axes feeding control
ystems. A signal generated by 611D-type servo driven module ( Mo ) is
ransmitted through electric cable ( Ew ) to control the motor ( Mt ) in X
xis feeding control system. There exists a speed feedback device ( Sf ).
he grating scales ( Gr ) feedback the straightness of X axis to Mo to ad-

ust the feed speed and direction. The electrical control of Z, U 1 and U 2 
xes is almost the same as that of X axis, excepting the difference intro-
uced in Section 1 . Although U 1 and U 2 axes share a 611D-type servo
riven module, they have different current relays ( Re ). 

The main functional failure modes of the system can be obtained
y the functional analysis and failure mechanism analysis of feeding
ontrol system, which include motor cannot be started, overshooting
f axes, short circuit, damage of electronic units, exceed standards of
eometric accuracy, crack of structure, etc. Then the “functional failure
f feeding control system ” has been chosen as the top event in FTA, the
ault tree of feeding control system is built and shown in Fig. 9 . 

The meanings of the notations in Fig. 9 are as following: T denotes
he functional failure of feeding control system; XF, ZF, U 1 F and U 2 F are
he functional failures of X, Z, U 1 and U 2 axes feeding control systems.
he basic components of each axes feeding control system include Gr, Sf,

w, Mo, Mt and Re . Therefore, in the fault tree model, the failure events
f basic components are noted by two parts: the code of axes and the
ode of each component. For example, X 

Ew represents the Ew failure of
 axis feeding control system, and the other notations follow the similar

nterpretations. 

.2. The BN modeling and CCFGs fusion 

From Fig. 9 , components of the same types are used in different sub-
ystems of feeding control system, an external shock or interior com-
76 
onent physical interactions may cause the failure of those components
imultaneously. So when considering the CCF caused by human interac-
ions, system function correlation and environment, the following com-
on cause events or CCFGs will exist in system. 

1) 𝐶 𝑀𝑂 = { 𝑋 

𝑀𝑂 , 𝑍 

𝑀𝑂 , 𝑈 

𝑀𝑂 } , which means the motors of different
subsystems fail at the same time by one influence factor. Based on
expert experience, the common cause factor 𝛽𝑀𝑂 = 0 . 1 . 

2) 𝐶 𝐺𝑅 = { 𝑋 

𝐺𝑅 , 𝑍 

𝐺𝑅 , 𝑈 

𝐺𝑅 
1 , 𝑈 

𝐺𝑅 
2 } , 𝐶 𝑆𝐹 = { 𝑋 

𝑆𝐹 , 𝑍 

𝑆𝐹 , 𝑈 

𝑆𝐹 
1 , 𝑈 

𝑆𝐹 
2 } and

𝛽𝐺𝑅 = 0 . 2 , 𝛽𝑆𝐹 = 0 . 15 . 
3) 𝐶 𝐸𝑊 = { 𝑋 

𝐸𝑊 , 𝑍 

𝐸𝑊 } , 𝐶 𝑅𝐸 = { 𝑋 

𝑅𝐸 , 𝑍 

𝑅𝐸 } and 𝛽𝐸𝑊 = 𝛽𝑅𝐸 = 0 . 15 . 
4) When X 

MT exists in multiple CCFGs, and expressed as 𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
1 =

{ 𝑋 

𝑀𝑇 , 𝑍 

𝑀𝑇 } , { 𝑋 

𝑀𝑇 , 𝑈 

𝑀𝑇 
1 } , { 𝑋 

𝑀𝑇 , 𝑈 

𝑀𝑇 
2 } , { 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
1 } ,

{ 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
2 } , { 𝑈 

𝑀𝑇 
1 , 𝑈 

𝑀𝑇 
2 } ; 𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
2 = { 𝑋 

𝑀𝑇 , 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
1 } ,

{ 𝑋 

𝑀𝑇 , 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
2 } , { 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
1 , 𝑈 

𝑀𝑇 
2 } and 𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
3 =

{ 𝑋 

𝑀𝑇 , 𝑍 

𝑀𝑇 , 𝑈 

𝑀𝑇 
1 , 𝑈 

𝑀𝑇 
2 } . The corresponding common cause

factors of two components, three components and four components
failure simultaneously are 𝛽𝑀𝑇 

1 = 0 . 25 , 𝛽𝑀𝑇 
2 = 0 . 2 and 𝛽𝑀𝑇 

3 = 0 . 15 . 

The failure rates and failure probabilities of system components at
 = 3000 h are listed in Table 6 . 



J. Mi et al. Reliability Engineering and System Safety 174 (2018) 71–81 

Fig. 10. The system BN with consideration of CCF. 

Fig. 11. System EN model. 
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Based on the transformation method of fault tree to BN and the mod-
fied 𝛽 factor model, the fault tree of feeding control system can be trans-
ormed to BN and decomposed by explicit modeling method. When CCFs
re considered, the root nodes of BN can be decomposed into indepen-
ent parts and common cause parts. Then the system BN with consider-
tion of CCFGs can be depicted in Fig. 10 as follows. 

The BN of Fig. 10 is the same as system BN structure without consid-
ring CCF, the difference is the redefinition of the probabilities of root
odes, then CCF of each components can be taken into consideration.
he failure probabilities of components in Table 6 are independent prob-
bilities, then the root nodes ’ actual failure probabilities can be updated
y modified 𝛽 factor model. 

For component A which is not included in multiple CCFGs, the up-
ated failure probabilities of this kind of basic components can be cal-
ulated by Eq. (30) and 𝑃 ′( 𝐸𝑊 ) = 0 . 0021 , 𝑃 ′( 𝑅𝐸) = 0 . 0071 , 𝑃 ′( 𝐺𝑅 ) =
 . 0075 , 𝑃 ′( 𝑆𝐹 ) = 0 . 0018 , 𝑃 ′( 𝑀𝑂) = 0 . 0007 . For component MT which is
ncluded in multiple CCFGs, the failure probability of MT can be com-
uted by Eq. (30) since it does not meet the limitation that the sum of
d

77 
factors of different CCFGs is larger than 1, then 

 

′( 𝑀𝑇 ) = 𝑃 
(
𝑀 𝑇 𝑖𝑛𝑑 

)
+ 𝑃 

(
𝑀 𝑇 𝑐 𝑐 𝑓 

)
= 𝑃 

(
𝑀 𝑇 𝑖𝑛𝑑 

)
+ 𝑃 

((
𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
1 

))
+ 𝑃 

((
𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
2 

))
+ 𝑃 

((
𝐶 𝐶 𝐹 𝐺 

𝑀𝑇 
3 

))
= 𝑃 

(
𝑀 𝑇 𝑖𝑛𝑑 

)
+ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
3 ∑
𝑖 =1 
𝛽𝑀𝑇 
𝑖 

1 − 

3 ∑
𝑖 =1 
𝛽𝑀𝑇 
𝑖 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
𝑃 
(
𝑀 𝑇 𝑖𝑛𝑑 

)

= 

1 

1 − 

3 ∑
𝑖 =1 
𝛽𝑀𝑇 
𝑖 

𝑃 
(
𝑀 𝑇 𝑖𝑛𝑑 

)
(32) 

Because ( 𝛽𝑀𝑇 
1 + 𝛽𝑀𝑇 

2 + 𝛽𝑀𝑇 
3 ) < 1 , the logical contradiction of mod-

fied 𝛽 factor model does not exist here. So, the failure probability of
his kind of components with consideration of CCFs can be calculated
irectly, and 𝑃 ′( 𝑀𝑇 ) = 0 . 0520 . 
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Table 7 

The state probabilities of components at t = 3000 h with 
CCF. 

Component State 

0 1 2 [0,1,2] 

MO 0.9993 – 0.0007 –
EW 0.9979 – 0.0021 –
GR 0.9925 – 0.0075 –
MT 0.9304 0.0089 0.0520 0.0087 
SF 0.9982 – 0.0018 –
RE 0.9929 – 0.0071 –

4
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Table 9 

The CMT of leaf node T . 

XF ZF U 1 F U 2 F (OR) T 

T _Bel T _ Pl 

0 1 2 0 1 2 

0 0 0 0 1 0 0 1 0 0 
0 0 0 1 0 1 0 0 1 0 
0 0 0 2 0 0 1 0 0 1 
0 0 1 0 0 1 0 0 1 0 
0 0 1 1 0 1 0 0 1 0 
0 0 1 2 0 0 1 0 0 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
2 2 2 1 0 0 1 0 0 1 
2 2 2 2 0 0 1 0 0 1 

𝑃

 

t  

T  

e  

i  

p  

i
 

o  
.3. Reliability analysis of feeding control system by using EN 

As the main power take-off components of Horizontal lathe, the work
tate of motors will affect the processing efficiency directly. Therefore,
n this paper, there exists an intermediate state between the perfect work
tate and failure state of the motors of DL series horizontal lathes, called
erating work state. So the state space of motors can be expressed as {0,
, 2}, where, 0 is the perfect working state, 1 is the derating working
tate and 2 represents failure state. The other components of system are
ll considered as two-state component. Due to the complexity of the sys-
em, the coupling between components and the lack of data, there is a
ignificant amount of epistemic uncertainty which can be represented
y an uncertain state [0,1,2] in the state space of system. Assume that
he life of all components obey exponential distribution, the basic com-
onents state probabilities of feeding control system can be obtained
ase on existing studies or experts experience and listed in Table 7 . 

By using the EN node definition and probability reasoning method
ntroduced in Sections 2.1 and 2.2 , the conditional mass table (CMT) of
on-leaf nodes of EN in Fig. 10 can be gotten. Table 8 is the CMT of
on-leaf nodes XF, ZF, U 1 F and U 2 F . 

Then the system EN model can be shown as Fig. 11 , and the CMT of
eaf node T is shown in Table 9 . By using the multi-state EN reasoning
ethod in Section 2.2 , the belief probabilities and plausibility probabil-

ties of non-leaf nodes XF, ZF, U 1 F and U 2 F can be obtained and listed
n Table 10 . 

The belief and plausibility probabilities of leaf node T can be calcu-
ated by Eqs. (11) and (12) , and 

𝑒𝑙 ( 𝑇 = 0 ) = 𝑃 ( 𝑇 _ 𝐵𝑒𝑙 = 0 ) 
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝐵𝑒𝑙 
(
𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 , 𝑇 = 0 

)

g  

Table 8 

The CMT of non-leaf nodes XF, ZF, U 1 F and U 2 F

X EW Z EW X GR Z GR X MO Z MO X SF Z SF 

U 

RE U 

GR U 

MO U 

SF 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 2 
0 0 0 2 
⋮ ⋮ ⋮ ⋮ 
2 2 2 2 
2 2 2 2 
2 2 2 2 
2 2 2 2 

78 
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝐵𝑒𝑙 
(
𝑇 = 0 ||𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

) 𝑛 ∏
𝑖 =1 

𝐵𝑒𝑙 
(
𝑥 
𝑘 𝑖 
𝑖 

)
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝐵𝑒𝑙 
(
𝑇 = 0 ||𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

)
×𝐵 𝑒𝑙 ( 𝑋𝐹 ) 𝐵 𝑒𝑙 ( 𝑍𝐹 ) 𝐵 𝑒𝑙 

(
𝑈 1 𝐹 

)
𝐵 𝑒𝑙 

(
𝑈 2 𝐹 

)
(33) 

 𝑙 ( 𝑇 = 0 ) = 𝑃 ( 𝑇 _ 𝑃 𝑙 = 0 ) 
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝑃 𝑙 
(
𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 , 𝑇 = 0 

)
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝑃 𝑙 
(
𝑇 = 0 ||𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

) 𝑛 ∏
𝑖 =1 

𝑃 𝑙 
(
𝑥 
𝑘 𝑖 
𝑖 

)
= 

∑
𝑋𝐹 ,𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

𝑃 𝑙 
(
𝑇 =0 ||𝑋𝐹 , 𝑍𝐹 , 𝑈 1 𝐹 , 𝑈 2 𝐹 

)
𝑃 𝑙 ( 𝑋𝐹 ) 𝑃 𝑙 ( 𝑍𝐹 ) 

×𝑃 𝑙 
(
𝑈 1 𝐹 

)
𝑃 𝑙 

(
𝑈 2 𝐹 

)
(34) 

Then the state belief probabilities and plausibility probabili-
ies of leaf node T under epistemic uncertainty can be calculated.
able 11 shows the results of system state probabilities when consid-
ring the influence of CCFs and without CCFs. In order to illustrate the
nfluence of epistemic uncertainty on system, the uncertain state of com-
onent MT is classified as perfect work state 0. Then the state probabil-
ties of system at t = 3000 h are calculated and also listed in Table 11 . 

Based on the previous assumption that the lifetime of components
bey exponential distribution, and the derating working state is re-
arded as perfect state. From the belief and plausibility probability of
 . 

X MT Z MT (OR) XF, ZF, U 1 F, U 2 F 

U 

MT 

Bel Pl 

0 1 2 0 1 2 

0 1 0 0 1 0 0 
1 0 1 0 0 1 0 
2 0 0 1 0 0 1 
[0,1,2] 0 0 0 1 1 1 
0 0 0 1 0 0 1 
1 0 0 1 0 0 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0 0 0 1 0 0 1 
1 0 0 1 0 0 1 
2 0 0 1 0 0 1 
[0,1,2] 0 0 1 0 0 1 
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Table 10 

The state belief and plausibility probabilities of non-leaf nodes of BN. 

Node State 

Bel Pl 

0 1 2 0 1 2 

XF 0.919180 0.008793 0.063432 0.927775 0.017388 0.072027 
ZF 0.919180 0.008793 0.063432 0.927775 0.017388 0.072027 
U 1 F 0.914575 0.008749 0.068125 0.923127 0.017301 0.076677 
U 2 F 0.914575 0.008749 0.068125 0.923127 0.017301 0.076677 

Table 11 

The state probabilities of leaf node T . 

Leaf node T Considering CCFGs 

State 0 1 2 

Epistemic uncertainty Belief Prob. 0.706706 0.027431 0.232005 
Plausibility Prob. 0.733514 0.056553 0.280306 

Ignore uncertainty State Prob. 0.733514 0.028204 0.238282 

Leaf node T Without considering CCFGs 

State 0 1 2 

Epistemic uncertainty Belief Prob. 0.808964 0.030368 0.119782 
Plausibility Prob. 0.838640 0.062523 0.161703 

Ignore uncertainty State Prob. 0.838640 0.031195 0.122977 

Fig. 12. The contrast curves of the influence of epistemic uncertainty and CCFGs to system reliability. 
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eeding control system at state 2 in Table 11 , it has shown that the fail-
re probability interval and failure rate interval of system at t = 3000 h
s [0.232005, 0.280306] and [8.7991 ×10 − 5 , 1.0964 ×10 − 4 ]/h respec-
ively when consider the influence of epistemic uncertainty and CCFGs.

hen the CCFGs are ignored, the system failure probability interval will
e [0.119782, 0.161703], and failure rate interval is [4.2529 ×10 − 5 ,
.8794 ×10 − 5 ]/h. The contrast curves of system reliability with consid-
ration of CCF are also obtained and shown in Fig. 12 . From Fig. 12 we
now that when the influence of uncertainty is ignored, the failure prob-
79 
bility and failure rate of system are 0.238282 and 9.072629 ×10 − 5 /h.
nd when the CCF and uncertainty are both ignored, the correspond-

ng failure probability and failure rate of feeding control system are
.122977 and 4.374068 ×10 − 5 /h. Finally, the contrast curves of system
eliability with epistemic uncertainty are shown in Fig. 13 . 

This section has built an fault tree model of the feeding control sys-
em of a DL series horizontal lath. The evidence theory is induced to
uantify the epistemic uncertainty caused by lack of data and infor-
ation in this system, and combined with BN model formed an EN to
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Fig. 13. The contrast curves of the influence of CCFGs to system reliability without considering epistemic uncertainty. 
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ealize the system reliability indexes calculation. A modified 𝛽 factor
odel is used to model the CCFGs in the system. From Table 11 and

ig. 12 , when the influence of epistemic uncertainty to system is in-
luded, system reliability interval at t = 3000 h is [0.808964, 0.838640]
ithout considering CCFs, and when the influence of CCFs is also consid-

red, the reliability interval is [0.706706, 0.733514]. This shows that
CFs has considerable impact on system reliability. The system state
robabilities in Table 11 when the epistemic uncertainty is ignored are
etween the corresponding belief probabilities and plausibility proba-
ilities, which verify the accuracy of results. From the results, we can
ee that the lower bound and upper bound of system reliability are with
ix digits of accuracy, which means the reliability uncertainty interval is
ith high accuracy, and sometimes it can be seen as a certain interval.

t is essential to distinguish this with the system reliability is accurate
nd not uncertain. That is to say the system reliability is uncertain but
n a relatively certain interval. 

. Conclusions 

This paper introduces a reliability analysis method for complex MSS
ith epistemic uncertainty based on EN. The epistemic uncertainty of

ystem is quantified by adding an uncertain state of root nodes in the
ulti-state EN, and the state space is then constructed. After that, the

elief function and plausibility function are defined using evidence the-
ry. Based on the BN forward reasoning, the measure system reliability
nd failure probability can be computed. The case study confirms the
easibility of this comprehensive method, and realized a quantitative
nalysis of system failure state. The backward reasoning can get the
osterior probability of failure causes based on the system failure state,
nd provide guidance for predicting the system failure types. 

CCF is an important failure mode in complex system, so the relia-
ility analysis of MSS with consideration of both epistemic uncertainty
nd CCF are also investigated in this paper. When CCFGs exist in sys-
em, a modified 𝛽 factor model is introduced and integrated with evi-
ence theory based on BN, and realize the state expression and prob-
bility reasoning for complex system with epistemic uncertainty and
CFGs. The reliability analysis of the feeding control system of DL se-
80 
ies HDHLs by this method has shown that, the proposed comprehensive
ethod has high computing efficiency and theoretical value. In engi-
eering practice, sometimes it is difficult to get enough data and the
ata are with large uncertainties, therefore this method also has rela-
ive practical value with enough good data and sufficient evidence. This
aper the nodes of EN are described as discrete variables, so when the
ystem inputs contain both discrete and continuous variables, how to use
he hybrid BN method to realize system reliability modeling and system
robability reasoning, and how to express and synthesize the multiple
omplex characteristics are worthwhile further studying and discussing.
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