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Abstract 
 
Estimation of remaining useful life (RUL) is helpful to manage life cycles of machines and to reduce maintenance cost. Support vector 

machine (SVM) is a promising algorithm for estimation of RUL because it can easily process small training sets and multi-dimensional 
data. Many SVM based methods have been proposed to predict RUL of some key components. We did a literature review related to 
SVM based RUL estimation within a decade. The references reviewed are classified into two categories: improved SVM algorithms and 
their applications to RUL estimation. The latter category can be further divided into two types: one, to predict the condition state in the 
future and then build a relationship between state and RUL; two, to establish a direct relationship between current state and RUL. How-
ever, SVM is seldom used to track the degradation process and build an accurate relationship between the current health condition state 
and RUL. Based on the above review and summary, this paper points out that the ability to continually improve SVM, and obtain a novel 
idea for RUL prediction using SVM will be future works.  
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1. Introduction 

Prognostics and health management (PHM) has attracted 
much attention because it can conduct timely maintenance, 
provide spare parts and prevent accidents [1, 2]. The core of 
prognostics is to estimate remaining useful life (RUL) of some 
key components [3]. In the field of prognostics, RUL is an 
important concept that means the residual useful life on an 
asset at a particular time [4, 5]. A prognostic model predicts 
RUL of a component by assessing its degradation level from 
its expected normal health condition. Usually, the predicted 
RUL is distributed, as a result of inference based on the estab-
lished model and the uncertainties among feature extraction, 
degradation modeling, condition estimation and RUL predic-
tion. Prognostics can be generally classified into five types: 
classifying models, knowledge based models, life expectancy 
models, artificial neural networks, and physical models [6]. 
Early signals of wear, aging, and fault conditions may be cor-
related with a degradation model. Physics-based failure mech-
anisms are the conventional algorithms related to damage 
propagation. In practice, it may be difficult to build a physical 
model for a specific system. Alternatively, one can employ 
data-driven approaches if run-to-failure data are available [7]. 

Data-driven based prognostics usually uses pattern recogni-
tion and machine learning techniques to train historic data. 
Data-driven based prediction methods for a nonlinear system 
include regression-based models [4], Wiener process [4, 8], 
Gamma process [9], stochastic filtering-based models [4], 
covariate based hazard models [4], hidden Markov models 
[10], and hidden semi-Markov models [11-13]. During the last 
decade, much attention on data-driven based prediction meth-
ods has been paid to the use of support vector machine (SVM). 
SVM, which considers a structure risk, has a better generaliza-
tion ability compared with conventional machine learning 
methods, such as artificial neural networks. Better generaliza-
tion ability means that this method can be applied to other 
fields more easily. 

SVM was first proposed by Cortes and Vapnik [14] for data 
analysis and pattern recognition and is mainly used for classi-
fication and regression.  

Fig. 1 shows the basic principle of SVM for classification. 
The lines =1ix b+wg  are the boundaries for classifying two 
different categories A and B. In Fig. 1, two categories A and B 
are represented by circles and squares, respectively: d is the 
distance between the two boundary lines. In classifying prob-
lems, a larger d means a better classification accuracy, so we 
should minimize w . 

Many have improved the performance of the normal SVM 
to solve the problem that SVM can only handle a small num-
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ber of samples and avoid the “curse of dimensionality” [15]. 
SVM is based on statistical learning theory and can be used to 
map a nonlinear relationship in a low-dimensional space to a 
linear relationship in a high-dimensional space. In 2002, Bos-
well [15] made a deep introduction of SVM and prospected 
the future use of SVM. In 1997, Drucker et al. [16] proposed 
support vector regression (SVR) to handle regression prob-
lems. SVR has an advantage in a high dimensional space be-
cause optimization of SVR does not depend on the dimension 
of the input space.  

The optimization of SVR aims to minimize w . Consider-
ing the influence of prediction errors, a relaxation factor could 
be added to the optimization formula given as follows: 
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where ix and *

ix are relaxation factors and C is a penalty 
factor. For a nonlinear problem, kernel functions are useful to 
map data into a high-dimensional space. Some commonly 
used kernel functions are as follows [17]: 

(1) Linear function: ( , )K x y x y= g  
(2) Polynomial function: ( , ) [ 1]dK x y x y= +g  
(3) Radial based function: 

2 2|| || /2( , ) x yK x y e s- -=  
(4) Two layer neural network function:  

( , ) tanh( )K x y kx y d= -g , 
 

where x is the coordinate value in the original space and y is 
the new coordinate value in a high-dimensional space. 

Li et al. [18] and Lin and Wang [19] introduced a fuzzy 
membership function to SVM for solving the effect of noise, 
which is useful for solving some practical engineering prob-
lems. Suykens and Vandewalle [20] proposed least square 
support vector machine (LSSVM) to enhance the computing 
complexity of SVM [21]. Brabanter [22] then proposed a ro-
bust LSSVM based on the distribution of error variables. Bra-
banter et al. [23] presented a bias-corrected confidence band 

for an LSSVM based on regression framework. Suykens and 
Vandewalle [20], and Brabanter [22] made major contribu-
tions to refine LSSVM. Suykens and Vandewalle [20] dis-
cussed the least square version of SVM classifiers. Brabanter 
[22] introduced the applications of least square SVR to deal 
with large-scale data. Based on the SVR and the LSSVM, Qu 
and Zuo [24] introduced an LSSVR-based method for online 
system condition prognostics, in which the condition indica-
tors were predicted based on noisy observations. Also, Lingras 
and Butz [25] described the relationship between support vec-
tor machine and rough patterns, and set upper and lower 
boundaries for regression problems. This method can strike a 
balance between the lower regression constraints and the pre-
diction accuracy. Khemchandani and Chandra [26] introduced 
twin support vector machine to solve pattern cognition prob-
lems. Zhao et al. [27] then used a twin support vector machine 
to resolve prediction objects. These two methods are both in 
the framework of the twin support vector machine. The twin 
support vector machine can solve two related SVM-type prob-
lems, each of which is smaller than the original SVM. 

Si et al. [4] emphasized that it is better to use data-driven 
methods for prediction of RUL. SVM is one kind of data-
driven method. Hence, this paper provides a review of over 90 
references within the last 10 years on RUL prediction using 
SVM and aims to discuss different applications of SVM to the 
prediction of RUL. The references reviewed in this paper are 
classified into two categories: improved SVMs and their ap-
plications to RUL prediction. When applying the improved 
SVMs to RUL prediction, the published methods can be fur-
ther divided into two types: one, to predict future status of the 
object to be monitored and then build a relationship between 
its future status and RUL; the other, to directly build a rela-
tionship between its current status and RUL. 

The rest of this paper is organized as follows. Sec. 2 intro-
duces a basic procedure to estimate RUL using SVM. Sec. 3 
introduces improved SVM algorithms and then reviews their 
applications for estimation of RULs. Sec. 4 discusses the us-
ability of RUL estimation methods based on SVM. Conclu-
sions follow in Sec. 5. 

 
2. Basic procedure of RUL prediction 

The basic procedure of RUL prediction using data-driven 
method is shown in Fig. 2, in which degradation modeling and 
RUL prediction are two significant parts in the whole system. 

Siegel et al. [28] showed a framework for predicting bearing 
failure and compared different prediction methods. A general 
procedure from the initial monitoring information to the final 
RUL prediction can be divided into three steps. Various kinds 
of sensors can be used to collect data from the monitored com-
ponent, such as temperature, acceleration, velocity, and so on. 
Based on these data, historical health condition can be tracked 
by some features. Wang et al. [29] used vibration signals of a 
gear in a gearbox to construct a health index to reflect its dete-
rioration. Once the health index exceeds an adaptive threshold, 
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Fig. 1. SVM for classification. 
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the early gear fault can be identified. Consequently, with the 
help of feature extraction, features can be used to reflect the 
health conditions and describe the deterioration trend of the 
monitored component. Based on these features, SVM can be 
used to construct a degradation model because SVM is excel-
lent in processing multi-dimensional data, for example, data 
collected from different sensors. Also, using an SVM-based 
estimation method, multistate estimation can be obtained by 
classifying the degradation conditions into multistates. 

Usually, a degradation model is related to failure time 
through connecting historic data with failure events. Bayesian 
based models are useful to link monitoring information with 
RUL. Here, unknown parameters can be obtained via the 
maximum likelihood estimation method. In addition, features 
used for building a degradation model can be regarded as in-
puts of SVM, and remaining times are regarded as outputs of 
SVM. Once new monitoring data are input to the trained SVM, 
the parameters of the SVM are automatically updated and an 
extrapolation of the SVM to reaching a failure threshold can 
be used to estimate the RUL of a system or a component.  

 
3. RUL Prediction based on SVM 

Using SVM to predict RUL can be classified into two types: 
one is improved algorithms to predict RUL, i.e., combining it 
with other algorithms to improve the accuracy of SVM; the 
other is applications of SVM to predict RUL of components. 
The scheme of this section is illustrated in Fig. 3. 

 
3.1 SVM based RUL prediction algorithms 

Many scholars have focused on the improvement of SVM 

performance for some specific applications. Using SVM for 
predicting RUL has to depend on some software to handle big 
data. In this paper, we refer to the MATLAB SVM toolbox 
and LIBSVM, which can implement the functionality of SVM 
and SVR. LIBSVM was developed by Lin and Chang [30] for 
the purpose of applying SVM on engineering applications 
more effectively. This is one of the most commonly used tools 
in the research on SVM to predict RUL. RUL prediction is 
closely related to machine performance degradation, and the 
analysis of degradation process is a basis to predict residual 
life [31]. The basic step to predict RUL is to obtain monitoring 
status and to preprocess these data to generate a degradation 
trend. Using this trend, the RUL estimation model can be ob-
tained [32, 33]. 

 
3.1.1 Degradation process modeling 

RUL is closely related to the degradation process. Benlalli 
and Hadjadj [34] emphasized the importance of vibration 
analysis because most degradation processes can be reflected 
by vibration features. To predict the RUL, the first step is to 
analyze the degradation process. 

Filtering methods are widely used to process monitoring 
data. Kalman filtering is a conventional method to process 
monitoring information. Sikorska et al. [6] mentioned that the 
Kalman filter is a computationally efficient recursive digital 
processing technique for estimating the state of a dynamic 
system. Carr and Wang [35] proposed an extended Kalman-
filtering method and combined it with condition monitoring 
information to recursively establish a conditional probability 
density function for RUL of a component. Carr and Wang 
[35] introduced a basic procedure to establish a model for 
prediction of RUL, and this procedure is also applicable to 
SVM as well. Cao and Tian [36] discussed disadvantages of 
the Kalman filtering for monitoring data processing and sug-
gested to use SVM to predict the future life of the monitored 
object. This method can predict the degradation trend of a 
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Fig. 2. The procedure of RUL prediction. 
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Fig. 3. Summary of RUL predictions using SVM. 

 



154 H.-Z. Huang et al. / Journal of Mechanical Science and Technology 29 (1) (2015) 151~163 
 

 

fault process more accurately. Dong and Luo [37] predicted 
the bearing degradation process based on PCA (principal 
component analysis) and optimized LS-SVM (least square 
SVM). LS-LSVM was used to train the selected features that 
can reflect the degradation process. The remainder of this 
section describes several methods, e.g., training data reduction, 
combination of SVM with other methods, relevance vector 
machine (RVM) and parameter optimization of the SVM 
modeling, to build degradation models based on SVM. 

 
3.1.1.1 Training data reduction 

Sufficient training data can improve training precision, 
while data redundancy will increase the calculation complex-
ity. Sensors can provide many kinds of monitoring data about 
equipment status and a number of features. Dimensionality 
reduction facilitates classification, visualization, communica-
tion, and storage of high-dimensional data, which provides a 
method to deal with multivariable problems [38]. It is impor-
tant to choose a tradeoff between training accuracy and calcu-
lation complexity. The way to process training data is impor-
tant in the applications of SVMs. Farquad et al. [39] proposed 
a feature extraction method based on SVM. The proposed 
hybrid rule extraction procedure can use a reduced training set 
to train the machine learning techniques and this method out-
performs the stand-alone intelligent technique. Huang [40] 
designed a reduced SVM to analyze regression problems. In 
Ref. [40], the normal SVM has difficulty in processing large 
scale data sets and cannot deal with the unbalance among 
different numbers of samples. The method proposed in Ref. 
[40] was proven more efficiently than the normal SVM for 
large scale data. 

Standard SVM is computationally infeasible for large scale 
data, so Tsang et al. [41] scaled up kernel methods to ap-
proximate the optimal solution and proposed core vector ma-
chine (CVM) algorithm. Experiments results show that the 
CVM is as accurate as the existing SVM, but is much faster 
and can handle much larger data sets than existing scale-up 
methods.  

Wang et al. [42] illustrated that the SVM decision function 
is fully determined by a subset of training data, which are 
called support vectors. It is important to remove irrelevant 
vectors from training sets. Two new methods were proposed 
to select subsets of training data. Bi et al. [43] described a 
method for performing variable ranking and selection using 
SVM. This method dramatically reduces the number of vari-
ables. 

 
3.1.1.2 Combination of SVM with other methods 

Zhong et al. [44] presented a three-stage method to process 
monitoring data. First, wavelet packet transform and time-
domain statistical features were used to extract features from 
monitoring data. Second, the compensation distance evalua-
tion technique was applied to select optimal features via sensi-
tivity ranking. Finally, the optimal features were inputs of the 
SVMs to predict faults and realize prognostics. Kang et al. 

[45] used wavelet packet analysis and SVM to process moni-
toring data. The standard deviations of wavelet packet coeffi-
cients of vibration signals, which have been normalized and 
the dimensions reduction using PCA, were considered as fea-
ture vectors to train SVM. Besides, the parameters of SVM 
were optimized by particle swarm optimization. Pan et al. [46] 
used improved wavelet packet decomposition and support 
vector data description (SVDD) to assess bearing performance 
degradation, and SVDD were used to train the designed health 
index. Wang et al. [47] used SVDD to fuse multiple health 
indicators to diagnose early gear faults and assess gear per-
formance degradation. Benkedjouh et al. [48] presented a 
method based on PCA and SVDD for bearing fault prognosis, 
in which PCA was used to reduce the dimensionality of vibra-
tion features and SVDD was used to fit training data to a hy-
per-sphere. 

Hao et al. [49] used SVM classifiers to recognize different 
bearing faults. The “one to others” SVM algorithm is adopted 
to distinguish different bearing faults under eight working 
conditions. Even though the number of samples is small, the 
testing accurate is high. Kim et al. [50] used the expanded 
multi-class SVM for the diagnostics of the turbo-shaft engine, 
with the artificial neural network (ANN) based on the real 
coded genetic algorithm (RCGA) to obtain the magnitude of 
defects and improve the convergence and the accuracy. Wei et 
al. [51] presented an SVM predicting model based on chaos 
theory. It adopted SVMs as nonlinear predictors. The number 
of input variables of the network was determined by comput-
ing reconstruct phase space’s saturated embedding dimension. 
The maximum effective forecasting steps were then deter-
mined by computing chaos time series’ largest Lyapunov 
exponent. Yuan and Li [52] presented a new method using 
binary tree to construct hyper-planes, to partition a class in 
each steps and eliminate blind areas, and applying sphere-
structured support vector machines (SSVM) for fault diagno-
sis. Yang and Zhang [53] studied the influence of cost func-
tions, kernel functions and parameters on prediction perform-
ance of SVMs. They also compared the performances of dif-
ferent kernel functions, including sigmoid, radial basis func-
tion (RBF), polynomial, and linear in the predicting process 
and found that the RBF kernel performed better than other 
kernel functions in a long term prediction. Kadri et al. [54] 
proposed a hybrid algorithm of a binary ant colony and SVM 
to improve the classification accuracy by an appropriate fea-
ture subset with low computational complexity. 

 
3.1.1.3 Relevance vector machine (RVM) for degradation modelling  

Based on the normal SVM, using Bayesian inference to de-
scribe SVM, called relevance vector machine (RVM), is a 
new method to solve regression and classification problems. 
Zio and Di Maio [55] used RVM, which is a Bayesian elabo-
ration of SVM, for degradation model identification, degrada-
tion state regression and RUL estimation. They also combined 
RVM and model fitting in a prognostic procedure for estimat-
ing the RUL of a machine component based on data collected 
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on a degradation trajectory. Wang et al. [56] took advantage of 
RVM and a conditional three-parameter capacity degradation 
model to realize prognosis of lithium-ion batteries. The RVM 
is used to derive the relevance vectors that can be used to find 
the representative training vectors containing the cycles of the 
relevance vectors and the predictive values at the cycles of the 
relevance vectors. This method transforms the monitoring 
vibration signals into features that can be used to track the 
health condition of the bearing and then to estimate its RUL.  

Caesarendra et al. [57] proposed a combination of relevance 
vector machine (RVM) and logistic regression in order to assess 
the failure degradation and predict the remaining useful life. 
RVM was selected as an intelligent system then trained by us-
ing run-to-failure bearing data and target vectors of failure prob-
ability. Nicolaou et al. [58] proposed a novel output-associative 
relevance vector machine (OA-RVM) regression framework 
that augmented the traditional RVM regression by being able to 
learn non-linear input and output dependencies. The experimen-
tal results show that the OA-RVM regression outperforms the 
traditional RVM in terms of prediction accuracy. 

 
3.1.1.4 Parameter optimization 

Cross-validation is the most common method used in SVM 
models to improve the training accuracy and to help users find 
optimal parameters. Duan et al. [59] introduced k-fold valida-
tion in detail. Cross-validation is popular for estimating gener-
alization error and there are several versions. In k-fold cross-
validation, the training data are randomly split into k mutually 
exclusive subsets (the folds) of approximately equal size. The 
SVM decision rule is obtained using k− 1 of the subsets and 
then tested on the subset left out. This procedure is repeated k 
times, and each subset is used for testing once. Averaging the 
test error over k trials gives an estimate of the expected gener-
alization error. 

Besides the development of new algorithms to process moni-
toring data introduced in the previous paragraphs, optimization 
of parameters in SVM is another hot topic. Penalty factor (C) 
and parameters used in kernel functions, like σ in RBF, are 
common parameters. SVM classification optimization prob-
lems are similar to SVM regression problems, and parameter 
optimization mechanism is analogous in a sense. Liu et al. [60] 
presented a formula to compute the optimal s (a parameter in 
RBF) under the principle of maximizing the class separability 
in a kernel space. The method for determining the parameter s 
is an exhaust search algorithm and the grid search, but the 
computation loads of these two methods are high. Scholkopf et 
al. [61] introduced a parameter v to effectively control the 
number of support vectors. This method has proven useful in 
eliminating the accuracy parameter e  used in the regression 
case and the regularization constant C in the classification case. 
They gave the actual meaning of v that is related to the break-
down point of the corresponding robust estimator.  

Grid search method is a common optimization way to find 
the best parameters. Besides this method, intelligent methods 
are more and more useful in parameter selection. Lorena and 

de Carvalho [62] introduced genetic algorithms (GA) and 
developed GA to search for an optimized set of parameters in 
multiclass problems. Yuan and Wang [63] regarded the SVM 
parameter selection for function approximation as a com-
pound optimization problem and used a mutative scale chaos 
optimization algorithm to search for optimal parameter values. 
Chaos optimization algorithm is an effective way for global 
optimization. Huang and Dun [64] proposed a PSO-SVM 
(particle swarm optimization SVM) model that hybridized the 
PSO and SVM to improve the classification accuracy. This 
optimization mechanism can realize the input feature selection 
and the SVM kernel parameter setting. 

 
3.1.2 RUL prediction 

The prediction of RUL is closely related to the monitoring 
data. Zhao and Feng [65] introduced a nonlinear state space 
model to predict the RUL. State information is an observation 
sequence. The relationship between monitoring data and RUL 
can be linked together [66]. The nonlinear state space model 
can provide a direct relationship between the degradation 
model and the predicted RUL based on Gamma process. Shen 
et al. [67] proposed an SVR-based generic multi-class solver 
to identify the different fault patterns of rotating machinery. 
Liu et al. [68] designed a modified probabilistic SVM regres-
sion (PSVR) method, which is based on the Bayesian prob-
abilistic paradigm with a Gaussian prior distribution. The pro-
cedure of this method can be briefly described as: preprocess-
ing for data reconstruction, model selection, and PSVR for 
estimation of prediction interval and conditional predictive 
distribution of the target of interest.  

Engineering assets are operating in dynamic conditions and 
are sensitive to environmental changes, and real-time monitor-
ing and prediction can help engineers get timely information 
about equipment [69]. To solve the timeliness issue of predic-
tion, Benkedjouh et al. [70] recommended an online process 
and an offline process to predict the RUL of bearings. The 
purpose of offline process is to learn the degradation models, 
and the isometric feature mapping reduction technique and 
SVR are used to predict the RUL. This method is based on a 
given threshold related to failure. After analyzing the offline 
data, the user can determine this threshold. If the predicted 
signal is below the threshold, it means the asset is in a normal 
state. If it is close to the threshold, the asset is on the verge of 
breakdown. Hu et al. [71] proposed a real-time lifetime pre-
diction method on the basis of wavelet SVM and fuzzy C-
mean clustering. For the products having nonlinear perform-
ance degradation paths and limited performance degradation 
data for each individual, this method can take full advantage 
of performance degradation of the same kind of products in 
individual real-time lifetime prediction. This method is similar 
to the work done by Wang et al. [12] who presented a similar-
ity-based approach for estimating RUL in prognostics, and 
created a degradation pattern library with the help of data from 
multiple units of the same system. The data from a test unit 
are to patterns in the library. The actual life of these matched 
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units is used as the basis to estimate RUL. The biggest advan-
tage of this method is that it can solve the problem when lack-
ing failure data. 

Main methods to predict RUL using SVM are listed in the 
following categories: Markov process with SVM, RVM, ex-
pert knowledge system, and survival analysis with SVM. 

 
3.1.2.1 Combination hidden Markov process with SVM 

A hidden Markov model (HMM) is a statistical Markov 
model in which the system being modeled is assumed to be a 
Markov process with unobserved (hidden) states. An HMM 
can be considered as the simplest dynamic Bayesian network. 
Combination hidden Markov with SVM can utilize the advan-
tages of both. Altun et al. [72] and Kang et al. [11] combined 
SVM and discrete hidden Markov process to realize fault di-
agnosis and prognostics. This hybrid method extracts features 
from monitoring signals effectively and forecasts the RUL 
more accurately. Valstar and Pantic [73] used a hybrid 
SVM/HMM to model time in the classifier. The results 
showed that modeling the temporal dynamics by the hybrid 
SVM-HMM classifier attained a statistically significant in-
crease of precision than SVM. An HMM is a common method 
nowadays for RUL prediction. 

Besides hidden Markov process, the combination of the 
Bayesian approach and SVM is another popular method to 
improve the performance of SVM. 

 
3.1.2.2 Relevance vector machine for RUL prediction 

An RVM is a machine learning technique for solving re-
gression and classification problems. RVM has nearly an 
identical function form to SVM; however, the ways that they 
are formulated and used are dramatically different [74]. Tip-
ping [75] introduced the general Bayesian framework for ob-
taining sparse solutions to regression and classification tasks. 

Di Maio et al. [76] combined RVM and exponential regres-
sion to estimate the RUL. The RUL estimation for the degrad-
ing component was performed by resorting to a combination 
of RVM followed by model fitting onto the identified rele-
vance vectors. This is an attempt to improve conventional 
methods that are either purely data-driven, or incorporating 
the physics of the process into the computation, or solely 
model-based, which cannot accommodate for un-modeled 
effects and can diverge quickly in the presence of unantici-
pated operating conditions. 

Hu and Tse [77] developed an approach combining RVM 
with the sum of two exponential functions to predict the de-
gree of wear and the RUL of field pump impellers. Through 
RVM learning process, a sparse dataset can be obtained for 
prediction. Compared with stand-alone exponential fitting, the 
proposed RVM-based model was much better in predicting 
the remaining useful life of pump impellers. 

 
3.1.2.3 Expert knowledge system 

Kim et al. [78] described a technique for accurate assess-
ment of the RUL of machines based on prior expert knowl-

edge embedded in closed loop prognostics systems. Effective 
intelligent models using condition monitoring techniques and 
failure pattern analysis for a critical dynamic system can lead 
to a robust prognostics system. For accurate assessment of 
machine health, a significant amount of a priori knowledge 
about the assessed machine or process is required. The tech-
nique proposed in Ref. [78] used SVM for classification and 
evaluation of health for bearing degradation. There are six 
failure degradation stages in the bearing system. SVM is used 
to classify these different stages. They built a prediction sys-
tem which consists of three sub-systems: expert knowledge, 
diagnostics and prognostics. The prognostics sub-system can 
be used to estimate the RUL. 

 
3.1.2.4 Survival analysis and SVM 

Apart from the above items, Widodo and Yang [79] dis-
cussed intelligent machine prognostics systems using survival 
analysis (SA) and SVM. SA utilizes censored and uncensored 
data collected from condition monitoring routines and then 
estimates the survival probability of machine components. 
SVM is employed to predict failure time of individual unit of 
machine components. 

A health index  was used by van Belle et al. [80] to build a 
prediction model. They showed the modified SVM can be 
used for survival analysis. The proposed method is able to 
predict the ordering of complex survival times. The resulting 
machine and its nonlinear kernel version are derived and are 
related to SVM. Survival time sampled from an accelerated 
failure time distribution was used for validation. Artificial data 
were created to compare the proposed method with standard 
models for survival analysis. 

 
3.1.2.5 Support vector data description  

Support vector data description is a pattern classification 
method based on structural risk minimization that can be used 
to detect anomalies. Benkedjouh et al. [48] presented a 
method for fault prognosis of bearing using SVDD. In Ref. 
[48], SVDD is used to fit trained data which are called health 
indicators and these indicators can reflect degradation process 
of bearings.  

Pan et al. [46] considered SVDD an excellent method of 
one-class classification, with the advantage of robustness and 
high computation. They extracted feature vectors from normal 
signals and calculated the distance departing from the normal 
health condition for reflecting degradation process of bearings. 
Through the above introduction, it is seen that only normal 
data are used to train SVDD.  

Zhu et al. [81] discussed that SVDD model can lead to 
over-fitting problems and other disadvantages, so they pro-
posed a rough SVDD. The degradation assessment results of 
bearings showed that RSVDD can improve the performance 
of SVDD. Shen et al. [82] proposed using fuzzy SVDD and 
running time to build a monotonic degradation assessment 
index of rolling bearings. 

Chen et al. [83] proposed a novel algorithm based on SVDD 
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and relative distance to predict the fault trend of machinery. Fre-
quency-domain features and kernel functions were optimized in 
training SVDD. The relative distances in a kernel space between 
diagnostic samples and the distributed sphere were introduced to 
decide which fault state the samples belong to. 

 
3.2 Applications of SVM to predict RUL 

When using SVM, the data collected from the monitored 
object are usually divided into two parts: training datasets and 
testing datasets. Training datasets are used to build models and 
find the optimal model parameters with the information ex-
tracted from training datasets. The traning set only shows the 
ability of ‘learning’; however, a good learner may lack the 
adequate generalization ability to predict reliable results. Test-
ing datasets are used to measure the prediction performance 
by accurancy or other penalty functions based on objectives of 
prognostics. For example, the evaluation of prediction perfor-
mace could be measured by score functions, Hamming dis-
tance, penalty for an over- or under-estimate, a performance 
class and so on. The method is evaluated according to practi-
cal problems. More details are discussed in the following ap-
plications of SVM-based RUL estimation. The objects to be 
assessed include bearings, batteries, electronic components, 
and other machine components. 

 
3.2.1 Bearings 

Bearings are important mechanical elements used to support 
the rotation of shafts, and the accurate prediction of their 
RULs is significant for preventing machine breakdown and 
reducing economic loss. Di Maio et al. [76] combined RVM 
and exponential regression for bearing RUL estimation. They 
acquired a series of degradation data on partially degraded 
rolling contact thrust bearings and tested their models on real-
world vibration-based degradation data. The most relevant 
basis functions identified on the smoothed and preprocessed 
data by RVM were fitted to the degradation model, which was 
then extrapolated to failure for estimating the RUL of the ma-
chine component. 

Unlike the method of Di Maio et al. [76], Sun et al. [84] ex-
tracted features from bearing vibration signals as the inputs of 
SVM models. The output was the ratio of the bearing running 
time and bearing failure time. SVM models of different bear-
ings are allocated different weights, and the combination of 
these models is used to predict RUL of a new bearing. 

Kim et al. [85] developed a health state probability estima-
tion method to predict RULs of bearings. This method uses 
SVMs to estimate the health state probabilities and makes 
long-term predictions reliable. Shen et al. [86] estimated the 
RUL of the rolling bearing under limited condition monitoring 
data based on relative features and multivariable SVM 
(MSVM). The relative root mean square was used to assess 
the performance degradation and sensitive features were se-
lected as input by correlation analysis, while MSVM was 
structured to predict RUL, which has the advantage of multi-

variable prediction and small sample prediction. 
 

3.2.2 Batteries 
Lithium-ion batteries are widely used in electrical vehicles 

for safety and lifetime-optimized operation. The battery is thus 
a common research target in RUL prediction. Nuhic et al. [87] 
used SVM for estimation of the state of health (SOH) and 
RUL of batteries. As the estimation of SOH and RUL is 
strongly influenced by environmental, ambient, and load con-
ditions, this method processes data with respect to these fac-
tors, including even the operation history. Internal state vari-
ables of batteries are either inaccessible or hard to measure 
under operational conditions. Saha et al. [88, 89] used RVM to 
improve the traditional prediction methods, such as autore-
gressive integrated moving average (ARIMA) and extended 
Kalman filtering (EKF). Their model is incorporated into a 
particle filter framework, where statistical estimates of noise 
and anticipated operational conditions are used to provide 
estimation of RUL in the form of a probability density func-
tion. The developed model not only provides a mean estima-
tion of the time to failure, but also generates a probability 
distribution over time.  

Park and Jeong [90] proposed two alternative approaches 
for predicting the lifetime of a secondary rechargeable batter-
ies. In the recursive SVR, they converted the relating issue 
into a nonlinear regression problem with right-censored failure 
time data. 

 
3.2.3 Electronic components 

Electronic components appear more and more in complex 
systems, and the research on their diagnostics and prognostics 
is of importance in PHM. Electronic components are sensitive 
to subtle condition changes and their RUL prediction can help 
users to take timely measures to improve the performance of 
the whole system. Guo et al. [91] presented an optimal SVM 
to diagnose the electronic system fault and forecast RUL. 
They improved a chaos particle swarm optimization algorithm 
to achieve parameter optimization for the optimal SVM.  

Long et al. [92] used LS-SVM to identify failure modes or 
components in the potential subsystems. This can help to find 
the potential failure of subsystems or components for complex 
electronic systems such as radar, aviation systems, and then 
repair or replace them before the whole system fails. This 
method is useful for condition-based maintenance (CBM) of 
complex electronic systems. 

 
3.2.4 Accelerated life testing 

Accelerated life testing can help to find the weakness of 
products and improve the design in manufacturing. Yin and 
Wang [93] proposed a practical model to predict the life of the 
items in accelerated life testing based on SVM. This model 
can reflect the relationship among the stress levels, the reli-
ability and the life of the items. SVM is used to establish a 
non-parameter model of the accelerated life testing, and the 
life under a normal stress level can be predicted using life data 
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under high stress levels. Li et al. [94] used SVM to predict 
time-to-failure in accelerated degradation testing (ADT). Con-
stant stress ADT is studied and ADT data are divided into 
several sets of performance degradation in different stress 
levels. Using the SVM prediction model, all degradation proc-
esses are predicted to failure and lifetimes are obtained, then 
life and reliability under normal condition are evaluated by 
accelerated models. The main target is electronic or photoelec-
tric products, so temperature is the primary typical environ-
mental factor. During the testing process, a single temperature 
stress is the only factor. Park and Jeong [90] proposed two 
nonparametric methods, the scale-accelerated degradation 
path model and the recursive SVM, for analyzing the acceler-
ated life testing data. They combined degradation paths and 
failure times to estimate the lifetime of the products. Lifetime 
can be estimated for the censored samples by recursively us-
ing the nonparametric Kaplan-Meier estimator. 

 
3.2.5 Other machine components 

Other applied areas for RUL prediction are relatively dis-
persed. Xu et al. [95] used SVM to establish a life prediction 
model to forecast the life of casings in gas wells. Risk indexes 
are defined as input vectors and the casing life is the output 
vector of this model. Liu et al. [96] predicted RUL of water 
injection pipelines using SVM, and corrosion factors which 
influenced the life of pipelines most are the input vectors. 
Using LIBSVM, they established an RUL prediction model. 
Xu et al. [97] used LS-SVM to predict the life of the barrels of 
tank guns. They compared different predicted lives through 
different parameters. Xu [98] proposed a new grey SVM 
model combining the superiority of SVM forecasting and grey 
accumulated generating operation. According to the extracted 
gyro lifetime index (the vibration energy trend), the grey SVM 
model is exploited to forecast and analyze the RUL of the 
dynamically tuned gyroscope. Yan et al. [99] applied SVM to 
assess rotor life loss severity in the power industries. SVM has 
no limits of the dimensions of input vectors, and the computa-
tional time is quite short. Kim et al. [100] use the SVM classi-
fier to estimate the health state probability, to predict the re-
maining useful life of pump with two sets of impeller-rub data. 

 
4. Discussion 

In Sec. 3, we reviewed the use of SVM for RUL prediction. 
The use of SVM on RUL prediction is discussed in this sec-
tion. Table 1 summarizes the main SVM-based methods to 
build degradation models (Sec. 3.1.1). 

A summary of RUL prediction using SVM (Sec. 3.1.2) is 
shown in Table 2, which summarizes RUL calculation meth-
ods using SVM. Table 3 lists the main applied fields of RUL 
prediction methods based on SVM. 

Applications of SVM are limited to the research fields 
shown in Table 3. Prediction of RUL focuses on several ob-
jects, for example, bearings and batteries, while the applica-
tions to other objects are seldom reported. Through analyzing 

Tables 1-3, some tips can be summarized as follows: 
(1) Methods used for both building the degradation models 

and predicting the RUL are usually a combination of SVM 
with other methods. For the use of SVM, parameter selections 
of SVM usually turn out to be a common optimization prob-
lem that can be solved by some advanced algorithms, such as 
genetic algorithm, particle swarm optimization, and so on. 

(2) SVM is a powerful tool for building degradation models, 
but it is still a tool to predict RUL on the basis of degradation 
models. Monitoring state information and lifetime are linked 
by other methods, e.g., conditional probability. A link degra-
dation model with lifetime is still limited and more attention 
should be paid to this topic. 

(3) Applications of SVM to predict RUL are still limited. 

Table 1. Summary of degradation models using SVM. 
 

Method References 

Reduced SVM 

Farquad et al. [39] 
Huang [40] 

Tsang et al. [41] 
Wang et al. [42] 

Bi et al.[43] 

Combination SVM with wavelet 
analysis 

Zhong et al.[44] 
Kang et al. [45] 
Pan et al. [46] 

Combination SVM with  
other theories 

Wang et al.[47] 
Hao et al. [49] 
Kim et al. [50] 
Wei et al. [51] 

Yuan and Li [52] 
Yang and Zhang [53] 

Kadri et al. [54] 

Relevance vector machine 

Zio and Di Maio [55] 
Wang et al. [56] 

Caesarendra et al. [57] 
Nicolaou et al. [58] 

Benkedjouh et al. [48] 

 
Table 2. Summary of RUL calculation methods using SVM. 
 

Method References 

SVR and threshold Benkedjouh et al. [70] 

Hidden Markov and SVM 
Altun et al. [72] 

Valstar and Pantic [73] 
Kang et al. [11] 

RVM and exponential regression Di Maio et al. [76] 
Hu and Tse [77] 

Similarity-based approach Hu et al. [71] 
Wang et al. [12] 

Prior expert knowledge and SVM Kim et al. [78] 

Survival analysis and SVM Widodo and Yang [79] 
Van Belle et al. [80] 

SVDD 

Pan et al. [46] 
Benkediouh et al. [48] 

Zhu et al. [81] 
Shen et al. [82] 
Chen et al. [83] 
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According to the reviewed conferences in this paper, the RUL 
predictions of bearings and batteries are two main application 
fields. SVM could be applied to estimate RULs of other key 
components, such as gearboxes, turbine blades and so on. 

 
5. Conclusions 

SVM is widely investigated and used to solve engineering 
problems because of its ability to deal with nonlinear prob-
lems. Moreover, the decision function provided by SVM is 
only determined by a small number of support vectors, which 
makes SVM promising in utilizing some useful data from 
many redundant data for RUL estimation. Many experts de-
veloped this estimation algorithm by combining SVM with 
other methods, such as wavelet analysis, Bayesian, hidden 
Markov, and so on. According to the discussion mentioned in 
Sec. 3.2, the applications of SVM to RUL prediction are still 
limited to the prognosis of bearings and batteries. More stud-
ies related to other key components need to be investigated in 
the future.  

Till now, most of the RUL estimation methods based on 
SVM are a kind of data-driven methods that depend on suffi-
cient monitoring information, which is a bottleneck for some 
cases, where limited monitoring data are available. In addition, 
if the machine to be monitored operates in a harsh working 
condition, background noise will corrupt data generated by the 
monitored objected and increase the difficulty to extract useful 
features from the monitoring data. Besides, it is critical to 
select appropriate sensors to avoid the effects caused by envi-
ronmental changes. Therefore, increasing the quality of moni-

toring information and then extracting useful features are sig-
nificant for future research work on RUL estimation. 
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