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Abstract

Based on kernel density estimation (KDE) and Kullback-Leibler divergence (KLID), a new data-driven fault diagnosis method is pro-
posed from a statistical perspective. The ensemble empirical mode decomposition (EEMD) together with the Hilbert transform is em-
ployed to extract 95 time- and frequency-domain features from raw and processed signals. The distance-based evaluation approach is
used to select a subset of fault-sensitive features by removing the irrelevant features. By utilizing the KDE, the statistical distribution of
selected features can be readily estimated without assuming any parametric family of distributions; whereas the KLID is able to quantify
the discrepancy between two probability distributions of a selected feature before and after adding a testing sample. An integrated Kull-
back-Leibler divergence, which aggregates the KLID of all the selected features, is introduced to discriminate various fault
modes/damage levels. The effectiveness of the proposed method is demonstrated via the case studies of fault diagnosis for bevel gears
and rolling element bearings, respectively. The observations from the case studies show that the proposed method outperforms the sup-
port vector machine (SVM)-based and neural network-based fault diagnosis methods in terms of classification accuracy. Additionally,
the influences of the number of selected features and the training sample size on the classification performance are examined by a set of

comparative studies.
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1. Introduction

Rotating machinery has broad applications in engineering
practices, like wind turbines, power generators, aircraft en-
gines, etc. The components, such as bearings, gears, in rotat-
ing machinery are usually subjected to undesirable stresses
and sudden shocks under which defects or degradations will
gradually increase and eventually cause severe damage and
unexpected shutdown of the entire system. Unexpected down-
time and failures of critical systems oftentimes lead to extra
cost due to production delay, unplanned corrective mainte-
nance activities or fatal risk to humans [1]. It is, therefore, of
paramount importance to accurately detect the presence of
faults as early as possible to avoid the consequence of severe
damages caused by faults and also facilitate preventive main-
tenance planning before the complete failure of engineering
systems [2]. On the other hand, rotating machinery and its
components oftentimes suffer several fault modes or damage
levels, so correctly identifying fault types and/or damage lev-
els can provide engineers comprehensive knowledge of the
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health status of the monitored system. Hence, developing an
effective and reliable fault diagnostic technique to identify
various sorts of fault modes and damage levels at their incipi-
ent stage becomes extremely important.

In general, existing fault diagnosis methods can be classi-
fied into two categories [3]: model-based methods and data-
driven methods. Samuel and Pines [4] demonstrated the im-
plementation of these two types of fault diagnosis methods in
a helicopter transmission system. Isermann [5] reviewed the
development process of model-based method and data-driven
method with three applications: DC motors, buses, and diesel
engines. Theoretically, the model-based fault diagnosis is to
determine a fault in a system by comparing available system
measurements with a priori information represented by the
system’s analytical/mathematical model [6]. Ideally, model-
based methods will be very effective if the analyti-
cal/mathematical model associated a specific fault can be ac-
curately constructed. In recent years, with the development of
intelligent computing technology, data-driven methods have
received much attention. In these methods, fault diagnosis is
realized by mapping the fault space to the feature space [7].
Put another way, the underlying relationship between features
extracted from condition monitoring data and fault
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modes/damage levels can be learned and constructed solely
based on a set of historical data (also called training data). The
data-driven methods therefore possess two distinctive advan-
tages over the model-based methods: Fault diagnosis can be
carried out automatically by the data-driven methods without
requiring too much assistance from engineers, and as opposed
to the model-based methods which require professional exper-
tise to make judgments, the data-driven methods do not heav-
ily rely on experience and knowledge from experts [8]. In
general, both the model-based and data-driven methods have
their own advantages. It is a case-dependent problem to
choose one of them or use both. If the system’s analyti-
cal/mathematical model with respect to a specific fault is read-
ily to be modeled, the model-based methods may be preferred,
otherwise the data-driven methods provide an alternative way
to reveal the input (extracted features)-output (faults types/
damage levels) relationship.

In most cases, a data-driven diagnosis method consists of
five basic elements as shown in Fig. 1 [9]. The raw data, say
vibration signals of rotating machinery, collected from condi-
tion monitoring program serve as inputs of a data-driven fault
diagnosis method. It is followed by the feature extraction, one
of the critical steps in a data-driven diagnosis method, to ex-
tract a bunch of features from raw signal data [10]. These ex-
tracted features are more or less related to the health status of
the monitored device. Many advanced signal processing algo-
rithms, such as fast Fourier transform (FFT) [2], empirical
mode decomposition (EMD) [11], wavelet transform, Hilbert
transform (HT) [12], can be used at this stage to extract a set
of features reflecting various types of faults and/or damage
levels. Nevertheless, not all the extracted features are sensitive
to every type of fault and/or damage level. Eliminating irrele-
vant features in the original feature set and retaining the most
sensitive features related to specific types of faults and/or
damage levels can not only significantly reduce the computa-
tional cost in ensuing fault classification, but also improve the
classification accuracy [13, 14]. Such a task is accomplished
in the stage of feature selection. Fault classification in step
four can be essentially viewed as a mapping from selected
features to specific fault modes/damage levels. The fault
modes/damage levels can be therefore identified by the values
of selected features. With the development of computational
intelligence techniques, many advanced classification methods
have been applied to data-driven fault diagnosis [7, 15-17].
Among them, support vector machine [18] and artificial neu-
ral network (ANN) [19] are two representative and powerful
classification methods, and they have been extensively used in
fault diagnosis for rotating machinery [20-22].

It is noteworthy that most reported data-driven fault diagno-
sis methods for rotating machinery, like SVM-based methods
[20], ANN-based methods [22], and K-nearest neighbor
methods [23], are seeking an optimal classification hyperplane
or a set of the best thresholds and weights to divide all the
training/testing samples into difference classes in a sample
space via deterministic approaches rather than a probabilistic

Feature
Selection

Feature
Extraction

Data —p» — Classification —P» Result

Fig. 1. The basic procedure of data-driven fault diagnosis methods [9].
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Fig. 2. The flow chart of the proposed data-driven fault diagnosis
method.

method. However, due to noises, measurement errors, or other
uncontrollable variations, even the training/testing samples
belonging to the same fault modes/damage levels may exhibit
a certain degree of uncertainty. Such uncertainty among the
samples within the same fault modes/damage levels can be
quantified by statistic tools. The fault diagnosis can be thereby
realized by examining whether the condition monitoring data
possess identical statistical characteristics with the training
samples. With this idea in mind, we developed a new data-
driven fault diagnosis method. Following the familiar frame-
work as shown in Fig. 1, the proposed data-driven fault diag-
nosis method consists of five steps as depicted in Fig. 2. The
ensemble empirical mode decomposition (EEMD) developed
by Wu and Huang to alleviate the mode mixing problem of
the empirical mode decomposition (EMD) [24, 25], is utilized
in this work to extract both time-domain and frequency-
domain features from the raw vibration signals of rotating
machinery. However, since some of the extracted features
may not be sensitive to some specific fault modes/damage
levels, the distance-based feature evaluation approach [9] is
employed to remove the irrelevant features in this study. In-
stead of using conventional computational intelligence meth-
ods, like SVM and ANN etc., we used two statistical ap-
proaches, i.e., the kernel density estimation (KDE) and the
Kullback-Leibler divergence (KLID), together to identify fault
modes/damage levels from a statistical point of view. The
KDE is a nonparametric probability density estimation ap-
proach in statistics, and it is able to adaptively fit any data set
to a smooth density function without the restriction of distribu-
tion type [26, 27]. On the other hand, the KLID (also called
information divergence, relative entropy) is a measure of the
difference between two probability distributions [28]. By ag-
gregating the KDE and KLID of all the selected features, an
integrated Kullback-Leibler divergence, acting as an indicator,
is proposed to identify faults modes/damage levels.

The rest of this paper is organized as follows: Sec. 2 intro-
duces the specific feature extraction and feature selection
methods used in our study. The principles of the KDE and
KLID are reviewed in Sec. 3, followed by an elaboration of
the new data-driven fault diagnosis method. The effectiveness
of the proposed method is demonstrated in two case studies of
fault diagnosis for bevel gears and rolling element bearings in
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Sec. 4, along with a set of comparative studies. Sec. 5 is a
brief closure.

2. Feature extraction and selection

2.1 EEMD method

The ensemble empirical mode decomposition (EEMD) is
an improved empirical mode decomposition (EMD) to allevi-
ate the mode mixing problem. The EEMD defines the true
intrinsic mode function (IMF) components as the mean of an
ensemble of trials. Each trial consists of decomposition results
of signals which are artificially added by a white noise with
finite amplitude [24]. By using the statistical properties of
white noise, the EEMD method makes the original EMD a
more effective self-adaptive dyadic filter bank in signal proc-
essing.

Based on the principle and observations of white noises
[24], applying the EEMD on signal x(¢) follows four basic
steps [25]:

Step 1: Initialize the number of ensembles M and the ampli-
tudes of white noises to be added, and set the index of trial m
=1.

Step 2: Perform the mth trial on the white noise-added sig-
nals. It contains three procedures:

(a) Add the white noise series with a given amplitude to the
investigated signals by:

x, (1) = x(1) +n, (1), ()

where n,(t) is the mth white noise series to be added, and
x,(t) represents the noise-added signals of the mth trial.

(b) Decompose the noise-added signal x,(¢) into / IMFs
¢, ((=12,--,I) using the EMD method developed in Ref.
[11], where c¢,, denotes the ith IMF of the mth trial, and / is
the total number of IMFs.

() If m>M , go to Step 3; otherwise go back to Step 2
and set m = m+1, but the white noise series added to the stud-
ied signal is different in the next iteration.

Step 3: Compute the ensemble mean ¢, of the M trials for
each IMF by:

M
¢ =ﬁch (=120, m=12-M). )

m=1

Step 4: Treat the mean c,(i=12,---,/) of each of the /
IMFs as the final IMFs.

After performing the EEMD, we can get a collection of /
IMFs ¢,(i=1,2,---,I) and a residual signal », indicating the
mean trend of x(¢) . Each IMF represents an oscillating signal
which is much simpler than the raw signal x(z) . In essence,
the raw signal could be reproduced by the IMFs and the resid-
ual signal as follows:

x(()=e 1, (3)

where the IMFs ¢,c,,---,c, contain a wide range of fre-
quency bands from high to low. Also, the EEMD method is
self-adaptive as different IMF components will change with
the raw signal.

Note that the amplitude of the white noise to be added and
the number of ensemble are two crucial parameters in the
EEMD method. The relationship of the amplitude of the white
noise to be added and the number of ensemble M can be
formulated as [25]:

a

€ = \/ﬁ > )

where a is the amplitude of the added white noise; e, is the
standard deviation of errors. Based on Eq. (4), a smaller @ may
lead to a smaller standard deviation of errors. Nevertheless, if
the amplitude of the added noise is very small, it may not
cause the change of extrema on which the EEMD method
relies. On the other hand, increasing the number of ensemble
M will also cause the reduction of the standard deviation of
errors. Generally, an ensemble number of a few hundred will
lead to an exact result, and the amplitude of the white noise is
oftentimes set to be 0.1~0.4 times of the standard deviation of
the investigated signal [24].

2.2 Feature extraction

Features extracted from the raw signals serve as the inputs
of classifier of data-driven fault diagnosis methods. A large
multitude of features including time- and frequency-domain
features, can be extracted from raw and processed signals.
Utilizing both time- and frequency-domain features in the
data-driven fault diagnosis methods can comprehensively
reflect the time- and frequency- distributions of signals. In our
study, we define 19 time- and frequency-domain features and
extract them from the raw signals and the signals pre-
processed by the EEMD and the Hilbert transform [29].

Time-domain features we chose include both dimensional
and dimensionless features. The dimensional feature may
significantly vary with respect to the load imposed on rotating
machinery and the rotary speed. The dimensionless feature, on
the other hand, is insensitive to the load and rotary speed and
can directly reflect the characteristics of faulty rotating ma-
chinery. Nine time-domain features ( p,, ~ p,, ) defined in our
work are tabulated in Table 1. The features p,, and p,,
reflect the vibration amplitude and energy in time domain;
whereas features p, and p,, ~ p,, characterize the distri-
bution of signals in time domain [12]. These nine features are
exacted for the raw signals and the first four IMFs. Thus, we
can get 5x9 time-domain features in total.

In most cases, the frequency spectrum of signals and its dis-
tribution may change when a fault occurs in rotating machinery.
The energy of some frequency components which are related
to a specific fault will increase. Here we define ten frequency-
domain features ( p,,~p,,, ) as tabulated in Table 1. The fea-
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Table 1. The time- and frequency- domain features.
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where x(n) (n=12,---N ) is the time series of signals; N is the number of

data points.

where s(k) isaspectrum of x(n),(k=12,---K); K isthe
number of spectrum lines; f, is the frequency value of the kth
spectrum line.

ture p,, indicates the vibration energy. The features p,,,
Dsysand po~p,, reflect the degree of concentration of the
spectrum. The features p,,, p,s~ p,, represent the main
frequency bands of signals [12]. Ten frequency-domain fea-
tures are extracted from the Fourier spectrum of the raw signals,
and the other 40 frequency-domain features are extracted from
the Hilbert envelope of the first four IMFs of the raw signal. In
total, we can acquire 50 frequency-domain features.

Even though we only chose a set of 95 features (45 time-
domain features and 50 frequency-domain features) in our
study, other features extracted by different equations or from
different processed signals (say higher order IMFs) can be
also included in the feature set.

2.3 Distance-based feature selection

Nevertheless, not all the extracted features have equal con-
tributions to faults/damage levels classification. Only some of
these features are sensitive to the change of health condition of
rotating machinery. The features which are insensitive to the
occurrence of faults or damage levels are called irrelevant
features. Removing these irrelevant features before conducting
classification not only enhances the accuracy of fault diagno-
sis but also improves the computational efficiency of classifi-
cation algorithms [13]. In this work, the distance-based
evaluation approach proposed in Ref. [9] is used to choose
some of the most effective features from the entire feature set,

i.e. 95 features. The distance-based evaluation approach is one
of the most popular feature selection methods in parallel with
the Pearson correlation coefficient, Fisher discriminant ratio
(FDR), and information gain, etc. [30] The basic idea behind
the distance-based evaluation approach is that when samples
are characterized by features, a smaller distance among sam-
ples within the same class is better, and a greater distance
between different classes is more favorable. Ranking features
by the distance-based evaluation approach consists of four
steps [9]:

Step 1: Evaluate the average distance of the jth feature of
training samples belonging to the cth class. It can be computed
by:

1 M. M,
d,; = m;; Doncj ~ D )
m#l ’

j=120 050 =12,,C

where M _ stands for the number of samples belonging to the
cth class; J is the size of a feature set; g, . is the value of
the jth feature of the mth sample in the cth class. The average
distance dlg.w) of the jth feature belonging to all the C classes
is given by:

w 1 <
al = 3 d.. (©6)
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Step 2: Compute the average value of the jth feature of the
M, samples in the cth class by:

1 &
U.; :qum,a,j > @)

¢ m=1

and then evaluate the average distance dﬁb) of the C different
classes.

a0 =SSl | )
J Cx (C _ 1) - ej  Hej

e=1
e#tc

where ¢ and e represent the indices of two different classes.
Step 3: Assess the effectiveness factor of the jth feature by:

d"
J
a/. = d_“ . (9)

7

Step 4: Rank all the features by the value of effectiveness
factor «;. The feature with a greater effectiveness factor is
preferred.

After ranking all the features, it is necessary to determine
how many features should be selected from the feature set. In
general, two criteria can be used here: (1) Sequentially adding
the feature to the classifier from the one with the greatest ef-
fectiveness factor until the accuracy of classification reaches a
pre-set threshold, say 95%~100%. (2) The number of selected
features is sufficient if adding extra features cannot lead to any
increment of accuracy.

3. Fault classification based on KDE and KLID

3.1 Kernel density estimation

The kernel density estimation (KDE) was originally pro-
posed by Rosenblatt and Parzen [26, 27], and it is also called
the Parzen-Rosenblatt window method in some fields such as
signal processing and econometrics. In statistics, the KDE is a
non-parametric technique to estimate the probability density
function of a data set, and it originates from the empirical
probability density function.

Let X,,X,,--,X, represent n independent and identically
distributed (i.i.d.) random samples from a random quantity
X with an unknown probability density function f(x). The
kernel density function is defined as [31]:

f,,(x)=#;1<(x hX"j, (10)
where K(e), a symmetric function with integration equal to 1,
is the kernel function. The kernel function may not be neces-
sarily a position function, but has to guarantee f;(x) satisfies
the basic requirement of a probability density function; #>0 is
the bandwidth. Many different types of kernel functions have

Table 2. The commonly used kernel functions.

Types Formula
Uniform (or box) %l(lul < 1)

Triangle (l—lul)l(lul < 1)

Epanechnikov %(l—uz)l(lul < 1)
. 15 2\2

Quaritic E(lfu ) I(lul < 1)

Triweight ;—;(1 ~2) 1(|u|<1)

Gaussian \/;7 exp[—%uzj

ya
Cosinus %cos(%ujl(lulsl)

been proposed in Ref. [32]; some commonly used kernel func-
tions are presented in Table 2.

In Table 2, I(«) is an indicator function, i.e., if |u| <1 is
true, I(|u| < 1) =1; otherwise I(|u| < 1) =0. Among these
functions, the Gaussian kernel function possesses many math-
ematical properties, such as centrality and gradual decay, and
has been broadly adopted.

The bandwidth % of the kernel function is an arbitrary pa-
rameter which exhibits a strong influence on the smoothness
of fh(x) . A larger 4 indicates that a greater region of samples
around the center point x influences the probability density
estimation. That is, the difference of function values between
the points closer to the center point x and points farther to x is
smaller, and fh (x) will be a smooth curve; otherwise,
‘fh(x) will be an unsmoothed broken line. However, a
smaller / indicates that a narrower region of samples is taken
into account when estimating the probability density at any
place. Thereby, choosing a proper value for the bandwidth /4 is
of great importance in the KDE. The most common optimality
criterion to select the bandwidth is the mean integrated
squared error (MISE) defined as [31]:

MiSE ()= E[(7, (x) - £ (x)) dr. (11

Under weak assumptions on f(s) and K(e) [26, 27],
one can get:

M]SE(h):AMISE(h)Jro(lhm“j, (12)
n

where o(e) is infinitesimal. The AMISE is the asymptotic
MISE defined as:

AMISE(h) = W+%mz (K@) HR(/ (). (3)
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where R Ig m, K) = Isz(x)dx 3 f'(e) is
the second-order derivative of f'(e) ; n is the total number of

samples. The following differential equation can be used to
seek the minimal value of the AMISE as:

R(K())

2 o/
— AMISE (h) —T+mz(K(-)) WR(f"(+))=0.
(14)
Thus, the minimal value of 7% is:
1/5
. K
Marase = ( ( )) /s . (15)

m, (K(.))Z/ R(f"( )) n'?

Apparently, the above equation cannot be used directly
since it is implicit and contains the unknown density function
f(s) or its second-order derivative f"(¢). In many engi-
neering applications, if the Gaussian basis function is used to
approximate univariate data, the underlying density to be es-
timated is also Gaussian. In such case, based on Eq. (16), one
can get the optimal value of 7 as:

A5 \5 1
. =[4LJ ~1.066n ° , (16)
3n

where & is the standard deviation of samples. Such ap-
proximation is named the Gaussian approximation, and it is
employed in our work.

3.2 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLID) was first intro-
duced in 1951 [28], and has been applied to quantify the dif-
ference of two distributions. For two discrete probability dis-
tributions P and Q, the KLID of Q from P is written as:

D, (P10) Zl[ ] a7

In essence, Eq. (17) is the expectation of the logarithmic
difference between the probabilities P and Q, and the expecta-
tion is taken by the probability P. The KLID is valid if the
integration of P and Q are both equal to 1. If Q@) =0, then
P({)=0 for all i. For the case where P(i)=0 and
P@i)/ 0@) =0, ln(P(z)/Q(z))P(z) 0since limxIn(x)=0.

Although the KLID is usually interpreted as a distance be-
tween two probability distributions, it does not completely
satisfy the properties of distance measure, such as symmetry
and triangle inequality. For example, the KLID of P from Q is
generally not the same as the KLID of O from P. On the other
hand, the KLID is always non-negative. Based on the Gibbs’
inequality, D,,(P||Q)=0ifand onlyif P=Q holds almost

everywhere. Based on the definition of the KLID, a smaller
value of D, (P||Q) implies a higher similarity between the
distributions of P and Q.

The symmetry property is very crucial in the classification
issue. Therefore, in our work, the symmetrized distance of
KLID is used as a measure to quantify the difference/distance
between two distributions. The symmetrized distance between
the distributions P and Q is defined as [28]:

D4 (P.0)= 5[ D (PI10)+ D (117)]. (18)

3.3 Fault classification based on KDE and KLID

3.3.1 The proposed fault diagnosis method

In this section, feature extraction, feature selection, kernel
density estimation, and Kullback-Leibler divergence intro-
duced earlier will be integrated together to realize fault diag-
nosis for rotating machinery. Some important symbols to be
used hereinafter are explained here:

(H)KD/ (j=1,2,---,n;i=1,2,---,C) denotes the KDE func-
tion of the jth feature of the training samples for type i fault.
The vector KD, =(KD},KD},---,KD!") is the KDE function
set of all the n selected features of the training samples for
type i fault;

(Q)TKD! (j=1,2,---,mi=1,2,---,C) is the KDE function
of the jth feature of the training samples for type i fault after
adding a testing sample. The vector TKD, = (TKD;,
TKD},---,TKD!') is the KDE function set of all the n se-
lected features of the training samples for type i fault after a
testing sample is added;

B KL (j=12,--,m;i=12,--,C) is the KLID between
KD/ and TKD/. The vector KL, =(KL,KL,---,KL') con-
tains the KLIDs of all the n selected features.

The overall flowchart of the proposed classification method
is in Fig. 3. As shown, training sample sets from two types of
fault modes (types I and II faults) and one testing sample sets
are used here to illustrate the rationale of the proposed method
in classifying two fault modes. Nine time-domain features
along with ten frequency-domain features are extracted from
the raw signal and the first four IMFs obtained by the EEMD,
and thus 95 features are acquired. Afterwards, the distance-
based evaluation approach is applied to assess all the features
and get the effectiveness factor «; of the jth (j=1,2,---,95)
feature. By sorting all the features from the one with the larg-
est effectiveness factor to the lowest one, the first n features
are selected from the original feature set and serve as the in-
puts of the ensuing classifier. It is noted that the value n of
selected features may have influence on the results, and it will
be discussed in Sec. 4.3.1. Therefore, the importance of the jth
feature to the fault classification is defined as:

F, :_j’ (j=l,2,~-~,n). (19)

J
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Fig. 3. The flowchart of the proposed fault diagnosis method based on the KDE and KLID.

The kernel density function is used to characterize the prob-
ability density of the selected features of each training set. For
example, based on the definition of KD/, one can get
KD} and KD, for the first feature of type I and type II faults
respectively as shown in Fig. 3. One sample from the testing
sample set is added into the two training sets, respectively, and
the kernel density functions of the first feature of the two new
sample sets are estimated as well and denoted as TKD, and
TKD, . In the same manner, KD/, KD], TKD;, and
TKD] (j=1,2,3,...,n) for all the selected features can be
estimated. It is followed by computing the KL/ and KL],
the symmetrized Kullback-Leibler divergences (KLIDs) of
KD/ and TKD/, KD and TKD] (j=1,2,---,n), via Eq.
(18). To get an overall assessment for all the n selected fea-
tures of each sample set, an integrated KLID KL, is defined
here to aggregate all the symmetrized KLIDs KI/ for the
type i fault together as:

IKL, =" F,xKL, (20)

J=1

where F/( j= 1,2,-~-,n) is the importance of the jth feature
computed via Eq. (19), and the vector F =(F,,F,,---,F,). By
using Eq. (20), one can get /KL, and IKL, for any sample
from the testing sample set with respect to the type I and type
II faults. A smaller value of /KL, indicates the testing sample
has a greater statistical similarity with the corresponding train-
ing sample set, that is, adding the testing sample into the train-
ing set leads to a very minor influence on the statistical distri-
bution of the original training sample set. Hence, one can dis-
criminate the fault type of the testing sample. For example, if
IKL, > IKL,, one can conclude that most likely the fault im-

plied by the testing sample is the type II fault rather than type I
fault. Following the same fashion, one can classify all the
testing sample sets into one of the two fault types.

In the same manner, the proposed method can be straight-
forwardly extended to a general case where more than two
distinct fault modes/damage levels exist. The fault
modes/damage level implied by the testing sample can be
identified by finding the smallest integrated KLID over all the
fault modes/damage levels.

3.3.2 Numerical example

In this section, the performance of the proposed method
will be validated with a numerical example. In Fig. 4, two
sample sets each of which has two features following bivariate
normal distribution are randomly generated. The mean and
covariance of the sample set #1 are u=[23]" and
C= [l, 0;0, 1] , respectively; whereas the mean and covariance
are set to 4 =[6 3] and C=[1.5,0;0,1.5], respectively for
the sample set #2. Each of sample sets contains 300 pairs of
samples. In such case, it may not be easy for the commonly
used classification methods, like SVM, to correctly classify all
the samples since these two sample sets have an overlapping
region. As seen in Fig. 4, the optimal hyperplane (represented
by the black dotted line in Fig. 4) solved by the SVM classifi-
cation method cannot completely separate the two data sets.

In our study, 50 samples of each set are randomly chosen as
the training samples and the remaining 600 samples are treat-
ed as the testing samples. The Gaussian function is used as the
kernel function for both the SVM-based classification method
and our proposed method. The results show that by using the
proposed method, one can get a slightly higher (99.7%) classi-
fication accuracy than that of the SVM method (97.5%). Only
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Fig. 4. The classifying results of the SVM-based and proposed meth-
ods on the artificial sample sets with an overlapping region.

two testing samples (indicated by the dots with rectangle) are
misclassified compared to 15 samples (the green stars on the
left of the hyperplane and the red crosses on the right of the
hyperplance) by using the SVM method as shown in Fig. 4.
The reason is that the proposed method can take into account
the statistical characteristics of the sample sets. Even if a test-
ing sample is far from the mean value of the sample sets, it
can still correctly identify the class of the testing sample since
the testing sample has similar statistical characteristics with
the samples in the class. The effectiveness of the proposed
method will be further explored via the real fault diagnosis
problems in the ensuing section.

4. Applications and result analysis

To validate the effectiveness of the proposed method in
terms of rotating machinery fault diagnosis, two case studies
of fault diagnosis for bevel gear and rolling element bearing,
the critical components of rotating machinery, are presented in
this section along with a set of detailed comparative studies.

4.1 Experimental rigs

Case 1: We performed experiments on a machinery fault
simulator produced by Spectra Quest, Inc. This equipment is
located in the Equipment Reliability and Prognosis and Health
Management (ERPHM) Lab at the University of Electronic
Science and Technology of China. The experimental test rig
and the faulty bevel gears to be tested are shown in Fig. 5. The
experimental test rig consists of a motor, a coupling, bearings,
two bevel gearboxes (one good right angle gearbox and one
worn right angle gearbox), discs, belts, and a shaft. The bevel
gearbox is driven by an AC motor and coupled with rub belts.
The rotation speed was set to be a constant at 1,800 r/min.
Three kinds of faulty gears, i.e., worn gear, gear with missing

Fig. 5. The experiment rig and the four bevel gears with different dam-
ages: (a) normal gear; (b) gear with broken tooth; (c) gear with missing

teeth; (d) gear with worn tooth.
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Fig. 6. (a)-(d) are the time-domain signals acquired from the four dif-
ferent gears (normal, broken tooth, missing teeth, and worn tooth); (e)-
(h) are the corresponding spectrums.

teeth, and gear with broken tooth, were simulated on the ex-
perimental setup. An accelerometer was mounted on the top of
the gearbox. Vibration data were collected every 3 min by an
eight-channel DAQ, the data sampling rate was 20 kHz and
the data length was 4,096 points. Several pieces of time-
domain signals and their corresponding spectrum of the nor-
mal gear and the faulty gears are shown in Fig. 6.

Case 2: The experimental data come from Case Western
Reserve University [33, 34]. The experimental rig is com-
prised of Reliance Electric 2HP IQPreAlet connected to a
dynamometer. The bearings to be examined support the motor
shaft. Faults with crack size 0.007, 0.014, 0.021, and 0.028
inches on the drive-end bearing (6205-2RS JEM SKF) were
artificially created by the electric discharge machining (EDM).
These faults are separately distributed on the inner raceway,
rolling element, and outer raceway. Two accelerometers were
mounted to collect vibration signals in the experiment. One
was placed on the motor housing, and the other one was lo-
cated on the outer race of the drive-end bearing. Data sam-
pling frequency was 12 kHz and the sampling length was 12 k,
rotating speed was fixed at 1750 r/min.
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Table 3. The data sets for defect and severity classification.

Table 4. The selected features for the data set A.

Number of | Number of L
.. . Defect size (inch) ..
Dataset | training testing .. . Condition
(training/testing)*
samples samples
35 35 — Normal
A 35 35 — Broken tooth
35 35 — Missing teeth
35 35 — Worn tooth
B 35 35 0.007/0.021 Inner race
1
B 35 35 0.007/0.021 Ball
B 35 35 0.021/0.007 Inner race
2
35 35 0.021/0.007 Ball
35 35 0.007
C 35 35 0.014 Inner race
35 35 0.021

*<” for the data set A denotes the defect sizes of the training and testing
samples are exactly the same but unmeasurable by a physical dimension.

4.2 Experimental scheme and results

The data collected from the aforementioned two experi-
ments are used to validate our proposed method. The data
with the same type of defects and severies are randomly di-
vided into training samples and testing samples. The training
and testing sample sizes, the places of defects, and the defect
sizes in the two case studies are detailed in Table 3. The data
set A comes from Case 1, whereas the data sets B and C come
from Case 2. The data sets A and B are designed to validate
the capability of the proposed method in terms of recognizing
the types of defects; whereas the data set C is used to examine
whether the proposed method is able to identify the severity of
the same type of defect.

The data set A includes 280 data sets for bevel gears with
four different operation conditions: normal, gear with broken
tooth, gear with missing teeth, and gear with worn tooth. The
defect sizes of both training sets and testing sets are exactly
the same. Apparently, it can be viewed as a four-class classifi-
cation problem.

The data set B consists of 280 data samples of the faulty
bearings, but with only two types of operation conditions:
inner race fault and ball fault. Two subsets B, and B, are con-
tained in the data set B, each of them have 140 data samples.
Two subsets B, and B, are contained in the data set B, each of
them have 140 data samples. The experiment over this data set
is carried out to further investigate the robustness and gener-
alization of the proposed method if the fault mode of the train-
ing set is the same as the testing set but the defect sizes are
distinct. For the subset B;, 70 samples with the fault detect
size of 0.007 inches are treated as the training set, and the rest
of 70 samples with the fault detect size of 0.021 inches are the
testing samples. The subset B, is similar to the subset B; ex-
cept that the training set of the subset B, is treated as the test-
ing set of the subset B; whereas the testing set of the subset B,
is the training set of the subset B;.

Feature ID 14 15 16 27 59
a,; 1.00 0.99 0.96 0.64 0.53

Feature ID 63 26 7 56 8
a; 0.53 0.53 0.53 0.53 0.51

o
0

e
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o
'S
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0.2r
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Fig. 7. The effectiveness factor «; of all the extracted features.

The data set C consists of 210 samples. The data set C is
collected from the case where a defect is on the inner race.
Three defect sizes, 0.007, 0.021, and 0.028 inches, are con-
tained in these data sets. The purpose of using these three data
sets is to validate the effectiveness of the proposed method in
identifying the damage levels (defect severity).

We exemplify the implementation of the proposed method
to the data set A. 95 features are first extracted from the data
set A. The amplitude of the white noise to be added is set to
0.3 and the ensemble number is 100 in EEMD based on the
recommended settings in Ref. [25]. The effectiveness factors
a; of all the 95 features computed by the distance evaluation
approach are shown in Fig. 7, and the first ten features with
the greatest values are listed in Table 4. Note here that the ten
selected features may change with different classification
problems. Consequently, the probability density functions of
the j th feature for the four different training sets can be ob-
tained by the KDE and denoted as KD/ (i=1,2,3,4) repre-
senting bevel gears with normal, broken tooth, missing teeth,
and worn tooth conditions, respectively. In the next step, a
sample from the testing sample sets is added into the four
training sets, respectively, and the probability density func-
tions TKD/ (i=1,2,3,4) after adding a testing sample can be
estimated. The probability density functions of the first feature
for the four training sample sets after adding a sample from
the one of the four testing sampling sets are shown in Figs. 8-
11, respectively.

In Figs. 8-11, the curves with circles represent the original
probability distributions of the first feature of the training sets,
while the curves with dots are the new probability density
functions after adding a testing sample. For example, after a
testing sample from the normal condition is added, the two
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sample with a missing teeth.
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Fig. 9. The original probability densities of the four training sample
sets and the corresponding probability densities after adding a testing
sample with broken tooth.

probability density functions are almost the same as observed
in Fig. 8(a). On the other hand, the probability density func-
tions have a larger discrepancy as seen from Figs. 8(b)-(d) if
the testing sample from the normal condition is added to the
other three training sample sets. The reason is that the statisti-
cal characteristics of the first feature of the testing sample
from the normal condition are quite different from these sam-
ples from the other three conditions, and it therefore causes a
larger change to the probability density functions. In the same
manner, as observed in Figs. 9-11, the new sample added to
the training sample sets has minor influence on the probability
density functions if the conditions of the new sample and
training sample sets are the same, otherwise a greater influ-
ence can be found.
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Fig. 11. The original probability densities of the four training sample
sets and the corresponding probability densities after adding a testing
sample with worn tooth.

In the ensuing step, the KLID is used to quantitatively
measure the similarity between the original and the new dis-
tributions of the first feature, and the results for the four dif-
ferent conditions are denoted as KL, (i =1,2,3,4 ). Following
the same fashion, the KLIDs can be computed for all the se-
lected features. The integrated KLIDs /KL, (i=1,2,3,4) that
aggregates the KLIDs of all the selected features is evaluated
based on the weights of the 10 selected features via Eq. (20).

The results of classification accuracy (represented by the
percentage of correctly identifying the fault modes or defect
levels, and a greater value is favorable) for the three data sets
are presented in Table 5. To demonstrate the advantages of
our proposed method over the conventional data-driven fault
diagnosis methods, the results from the SVM-based fault di-
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Table 5. The classification accuracy of the three methods*.

Data SVM (%) BP network (%) | ¢ pmpg;e)d method
0
set
Training | Testing | Training | Testing | Training | Testing
A 95.25 92.14 100 99.62 100 100
B 100 98.10 | 89.29 87.14 100 100
C 100 97.86 100 96.19 100 100

*The results with the highest accuracy in each data set are highlighted by
the underlined numbers.

agnosis method and the back-propagation (BP) network-based
fault diagnosis method are also given and compared. For the
SVM-based fault diagnosis method, the parameter o in
SVM is optimized by the grid search method [30, 35]. The
number of neurons in the input layer of the BP network-based
fault diagnosis method equals to the number of the selected
features n. A single hidden layer structure is adopted and the
number of neurons in the hidden layer is determined by
\n+m +1, an empirical formula reported in Ref. [36], where
m is the number of the output neurons, the number of all the
possible fault modes/damage levels. Since the initial thresh-
olds and weights in a BP network have significant impact on
the classification accuracy, the genetic algorithm (GA) is used
to determine the initial optimal values of thresholds and
weights. The population size of the GA is set to 40 and the
maximum number of generations is set to 100. Each individ-
ual solution is coded by a 10-bit string, and the generation gap,
the crossover rate, the mutation rate are set to be 0.95, 0.7, and
0.01, respectively.

As observed from Table 5, for the data set A, the BP net-
work-based fault diagnosis method possesses a very high
(100%) training and testing accuracy (99.62%), whereas the
SVM-based fault diagnosis method shows a relatively poor
accuracy. Contrary to the data set A, the SVM-based fault
diagnosis method has a high training and testing accuracy for
the data set B, whereas the BP network-based fault diagnosis
method is inferior for the data set B as both the training and
testing accuracy are lower than 90%. Both the SVM-based
fault diagnosis method and the BP network-based fault diag-
nosis method have a very high accuracy (greater than 95%)
for the data set C. The proposed method outperforms the other
two methods on all the three data sets and possesses excellent
accuracy (100%).

4.3 Comparative studies for different parameter settings

The number of selected features and the size of training
sample sets are two critical parameters for data-driven fault
diagnosis methods. The following subsection will examine
how the performance of our proposed method may vary with
different parameter settings.

4.3.1 The number of selected features
To examine the relation between the number of selected fea-

tures and the classification accuracy, the numbers of selected
features for the gearbox and the bearing fault diagnosis prob-
lems are changed from 1 to 95, and the corresponding classifi-
cation accuracies for the data sets A~C are compared. The
number of training samples and the number of testing samples
are both set to 35 in this study. The results for the proposed
method, SVM-based fault diagnosis method, and BP network-
based fault diagnosis on the data sets A~C are plotted in Fig. 12.

As seen from Fig. 12, even if the number of selected fea-
tures is very small (i.e. less than ten), the proposed method
always exhibits the highest accuracy than the other two meth-
ods for all the data sets. In addition, the proposed method has
the most stable performance with the increase of selected fea-
tures. The classification accuracy will not decrease or fluctuate
with the number of selected features. On the other hand, the
SVM-based and BP network-based fault diagnosis methods
show inferior performance for the data sets A and B. The ac-
curacy of the SVM-based and BP network-based fault diagno-
sis methods may not be monotonically increasing with respect
to the number of selected features. The SVM-based fault di-
agnosis method has a very low accuracy for the data set B if
the number of selected feature is greater than 30; whereas the
oscillating phenomena occur for the BP network-based fault
diagnosis method. The reduction of accuracy is also observed
for these two methods on the data sets B and C. The observa-
tion from Fig. 12 illustrates that the proposed method, which
directly considers the importance of the selected features,
possesses a more stable performance with respect to the num-
ber of selected features than the other two methods.

Using more selected features as the inputs of classification
will surely reduce the computational efficiency for all the
data-driven fault diagnosis methods. To balance the computa-
tional cost and classification accuracy and based on the second
criterion for choosing the number of selected features men-
tioned in Sec. 2.3, the first ten features are selected for our
case study in Sec. 4.2.

4.3.2 The size of training sample sets

In this subsection, we also conduct a comparative study to
examine whether the size of training samples has any impact
on the classification accuracy. The first ten features with the
highest value of effectiveness factor «; are selected as the
inputs of the proposed method. The number of testing samples
is set to be 35 for all the data sets. The classification accura-
cies with respect to the number of training samples changing
from 1 to 70 are plotted in Figs. 13(a)-(c) for the three data
sets respectively.

It is observed from Fig. 13 that the proposed method has a
low accuracy when the number of the training samples is less
than ten, but the accuracy is significantly improved (100% for
all the data sets) when the number of training samples is
greater than ten. It is noteworthy that the accuracy curve of the
proposed method has a small decrease for the data set B when
the number of training samples becomes larger than 56. The
reason for this phenomenon is that the new added training
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samples are far from the mean value of the original probability
density, that is, these data are outliers and will change the
shape of probability density function dramatically, leading to
the difficulty in classifying fault modes. For the SVM-based
fault diagnosis method, it has an excellent performance (100%
accuracy) for the data sets B and C. In addition, the classifica-
tion accuracy of the SVM-based fault diagnosis method is
stable with the increase of training samples size for all the data
sets. Nevertheless, the SVM-based fault diagnosis method
exhibits relatively low classification accuracy (about 90%) for

the data set A regardless of the number of training sample size.

For the BP network-based fault diagnosis method, the classifi-
cation accuracies for the data sets A and C are close or equal
to 100% in most cases. However, the classification accuracy
shows an oscillating behavior for the data set B.

5. Closure

A new data-driven fault diagnosis method for rotating ma-

chinery has been proposed based on kernel density estimation
and Kullback-Leibler divergence. The KDE is used to esti-
mate the statistical characteristics of the selected features of
the training and testing samples, whereas the KLID is em-
ployed to quantitatively measure the similarity between two
estimated distributions. With the assistance of the KDE and
KLID, the fault modes/damage level is identified by compar-
ing the integrated KLID of the selected features. As demon-
strated in fault diagnosis of bevel gears and rolling element
bearings, the proposed method has an exceptional perform-
ance on faulty pattern recognition and outperforms the con-
ventional SVM-based and BP network-based fault diagnosis
methods. Since the proposed method incorporates the statisti-
cal characteristics of the samples within one set, it manifests
superior classification accuracy and robust performance.
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