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Abstract 

 

Reliability based design optimization (RBDO) has been widely implemented in engineering practices for high safety and reliability. It 

is an important challenge to improve computational efficiency. Sequential optimization and reliability assessment (SORA) has made 

great efforts to improve computational efficiency by decoupling a RBDO problem into sequential deterministic optimization and reliabil-

ity analysis as a single-loop method. In this paper, in order to further improve computational efficiency and extend the application of the 

current SORA method, an enhanced SORA (ESORA) is proposed by considering constant and varying variances of random design vari-

ables while keeping the sequential framework. Some mathematical examples and an engineering case are given to illustrate the proposed 

method and validate the efficiency.   
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1. Introduction 

Reliability based design optimization (RBDO) is an ap-

proach to achieving reliable decision when considering the 

randomness of design variables and parameters which maybe 

come from manufacture, environment and so on [1-6]. The 

typical mathematical formulation of RBDO is as follows: 

 

,
min  ( , , )

. . Pr( ( , , ) 0) ( ),   1

      ,  

i t

L U L U

f

s t G i hβ≤ ≥Φ =

≤ ≤ ≤ ≤

X
X P

d µ

X X X

d µ µ

d X P

d d d µ µ µ
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where d  is a vector of deterministic design variables; 
Xµ  

indicates a vector of mean values of random variables 

1 2{ , , , }nX X X=X ⋯  while 
Pµ  represents a vector of mean 

values of random parameters 1 2{ , , , }mP P P=P ⋯ . ( )f ⋅  is the 

objective function. ( ),  1iG i h⋅ = ∼  are performance func-

tions, and Pr( ( ) 0)iG ⋅ ≤  is the probability of success. ( )tβΦ  

is the target reliability and tβ  denotes the reliability index. 

( )Φ ⋅  is the cumulative distribution function (CDF) of the 

standard normal random variable. The superscripts ‘L’ and 

‘U’ denote the lower and upper boundaries, respectively. In 

this formulation, , Xd µ  are design variables. 

Solving the RBDO problem directly will involve double 

loops: the outer loop and the inner loop. The outer loop is to 

minimize the objective function while reliability analysis is 

performed in the inner loop. To efficiently deal with RBDO 

problem, many methods are developed to improve the effi-

ciency of reliability analysis, such as reliability index ap-

proach (RIA), performance measure approach (PMA) [7-9] 

and enhancing the efficiency of algorithm in finding the most 

probable point (MPP) [10-12]. Although the PMA can effi-

ciently decrease computational expense in reliability analysis, 

the computational expense for the large-scale RBDO problem 

with double loop approach is still prohibited. Then two new 

classes for dealing with RBDO are proposed [13-18]. In the 

first class, the RBDO problem is decoupled into sequential 

deterministic optimization and reliability analysis [13-18]. 

When constructing the deterministic constraints in the deter-

ministic optimization, the strategy of constraint shift is adopt-

ed in Ref. [13]; the sequential optimization and reliability 

assessment (SORA) proposed in Ref. [14] and enhanced one 

in Ref. [15] adopts the strategy that utilizing its MPP of previ-

ous cycle to obtain the shift vector of each random design 

variable to each probabilistic constraint. In the second class, 

the RBDO problem is converted into a deterministic optimiza-

tion by eliminating the reliability analysis (performing in the 

inner loop) through the KKT condition [17, 18]. 
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The objective of this paper is to further improve the compu-

tational efficiency of the current SORA by considering both 

cases of constant and varying variances of random design 

variables while keeping the single-loop framework. The effi-

ciency of the proposed method is compared with the existing 

approaches in Refs. [14, 16] with several illustrative examples. 

This paper is organized as follows. In section 2, the SORA 

method is briefly reviewed as well as the PMA method. The 

enhanced SORA (ESORA) is proposed in section 3. Several 

examples are used to illustrate the efficiency of the proposed 

method in section 4, followed by the conclusions in section 5. 

 

2. Review of SORA 

2.1 Approach of PMA 

Different from the deterministic optimization, the feasibility 

of probabilistic constraints needs to be checked when mini-

mizing the objective function in RBDO. The ith probabilistic 

constraint is formulated as follows: 

 

Pr( ( , , ) 0) (0) ( )
ii G tG F β≤ = ≥Φd X P                (2) 

 

where the cumulative distribution function ( )
iG

F ⋅  is de-

scribed as 
 

,

( ) 0

(0) ( , )
i

i

G

G

F f d d

⋅ ≤

= ∫ ∫ X P x p x p⋯                   (3) 

 

where , ( , )fX P x p  is the joint Probability Density Function 

(PDF) of ,X P  [9]. 

The first order reliability method (FORM) is a MPP-based 

method and has been widely used for reliability analysis of the 

RBDO. Based on the FORM, reliability index approach (RIA) 

and performance measure approach (PMA) are proposed [7, 

20]. In the both approaches, the random variables and parame-

ters ,X P  in X-space should be transformed into ,X PU U  in 

the standard normal space using the Rosenblatt transformation. 

It has been pointed out that the PMA is more stable than the 

RIA [7]. 

Based on the PMA, the probabilistic constraint in Eq. (2) 

can be expressed as 1( ( )) 0
iG tF β− Φ ≤ . So the RBDO formula-

tion is rewritten as [9]: 
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where 
ip

G  can be obtained by 
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The solutions of Eq. (5) are the MPP ( ),∗ ∗
X PU U  and the 

performance measure ( , )pG G ∗ ∗= X PU U . The MPP ( ),∗ ∗
X PU U  

in the X-space can be obtained using the inverse Rosenblatt 

transformation. When the random variables follow the normal 

distribution, the MPP in X-space can be obtained by 

 

.
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P P P
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After transformation, ( , ) ( , ) .pG G G∗ ∗ ∗ ∗= =X PU U X P  Eq. 

(4) can be rewritten as: 
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2.2 Method of SORA 

The SORA is one of the most efficient single-loop methods. 

The SORA decouples a RBDO problem into sequential de-

terministic optimization and reliability analysis as shown in 

Fig. 1 [14]. At each cycle, the deterministic optimization is 

first performed to obtain the optimum of each design variable, 

and then the reliability analysis of each probabilistic constraint 

is carried out at the optimal point. If all the probability con-

straints are not satisfied and the value of objective function is 

not stable, the MPPs information will be used in the next cycle. 

The flowchart of SORA is given in Fig. 2. 

When the ith probabilistic constraint is violated in Cycle (k-

1), it also means that the performance measure at the MPP 

does not satisfy ,( ) ,( )( , , ) 0i i

iG
∗ ∗ ≤d X P  with PMA. The SORA 

uses a strategy of “shift vector” to make sure the MPP of Cy-

cle k falling into the deterministic feasible region 
,( ) ,( )( , , ) 0i i

iG
∗ ∗ ≤d X P  [14]. The shift vector of the ith prob-

abilistic constraint for Cycle k is: 
 

( ), 1 ,( ),( 1)i k k i k− ∗ −= −
X

s µ X                             (8) 

 

where 1k−
X
µ  is the vector of mean values of random variables, 

and ,( ),( 1)i k∗ −X  is the corresponding MPP of the ith probabilis-

tic constraint obtained in cycle (k-1). It should be noted that 

each probabilistic constraint has its own shift vector because 

each one has its own MPP. 

With the SORA method, the equivalent deterministic opti-

mization of the original RBDO problem in cycle k is formu-

lated as: 

Deterministic 

optimization

RA 1

RA h

L
Deterministic 

optimization

RA 1

RA h

L

Cycle 1 Cycle 2

 
 

Fig. 1. Illustration of SORA (RA: reliability analysis). 
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From Eqs. (7)-(9), the MPP of Cycle k is approximated in 

the deterministic optimization in the SORA as: 
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3. Enhanced SORA for RBDO problems 

In this paper, it is assumed that each performance function 

is explicit so that its expression of gradient can be obtained. 

Based on Eq. (6), the following formulation holds in cycle k: 
 

,( ), ,( ),

,( ), ,( ),

, 1

, 1 .

j j j

j j j

i k k i k

j X X X

i k i k

j P P P

X U j n

P U j m

µ σ

µ σ

∗ ∗

∗ ∗

= + ⋅ =

= + ⋅ =

∼

∼

              (11) 

 

From Eqs. (10) and (11), the MPP is approximated in the U-

space in the kth cycle of the SORA as: 
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With the PMA method, the MPP of a probabilistic con-

straint could be obtained: 
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Following the same way used in Ref. [17], based on Eq. 

(13) the relationship between the MPP ( ),∗ ∗
X PU U  and the 

gradient 
,

( , ) |G ∗ ∗∇
X P

X P U U
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and the relationship of gradient in the U-space and X-space is: 
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From Eqs. (6), (14) and (15), at the MPP ( ),∗ ∗
X P  in the 

X-space, the following formulation holds: 
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Eq. (16) holds for each cycle, and the MPP in Cycle k can 

be obtained by 
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Fig. 2. Flowchart of SORA. 
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where 
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When constructing the deterministic constraints in Cycle k, 

the gradient at the actual MPP can not be obtained because the 

reliability analysis is not performed. The gradient at the actual 

MPP is approximated in the following way. 

For the random design variables with constant variances, 

from Eq. (12) 

 
, ,( 1) ( 1)k k k k∗ ∗ − −− −

≈X X
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X µ X µ
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which is equivalent to 
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X X
X µ µ X                        (19) 

 

and the MPP of random parameters is: 

 
, ,( 1) .k k∗ ∗ −≈P P                                   (20) 

 

By substituting Eqs. (19) and (20) into Eq. (18), the ap-

proximation of the gradient at the MPP is obtained. At the first 

cycle ( 1)k = , the gradient at the actual MPP is approximated 

as the gradient at the mean values of random variables and 

parameters. 

For the random design variables with varying variances, 

with Eqs. (14)-(18) the following formulation can be obtained: 
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For the random design variables with varying variances (e.g. 

rσ µ= ⋅ , where r  is the constant coefficient of variation), 

from Eq. (12) 
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By incorporating Eqs. (20) and (23) into Eq. (22), the gradi-

ent at the MPP is obtained. At the first cycle, the gradient at 

the actual MPP is approximated as the gradient at the mean 

values of random variables and parameters. 

The discussion abovementioned is based on the normal ran-

dom variables and parameters. For non-normal random vari-

ables and parameters, the Rackwitz-Fiessler’ two-parameter 

equivalent normal method can be used to obtain the mean 

value and variance of equivalent normal distribution at a point 

of interest [16, 17]. Methods of choosing parameters for some 

non-normal random distributions to achieve the linear rela-

tionship between the mean value and standard deviation are 

proposed in Ref. [16]. 

The flowchart of the ESORA proposed in this paper is pro-

vided in Fig. 3. When the performance functions are all linear 

 
 

Fig. 3. Flowchart of the ESORA. 
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functions, because the gradient of each performance function 

is constant, the original RBDO problem is completely trans-

formed into a deterministic optimization problem with Eqs. 

(17) and (21). In other words, the optimum of this determinis-

tic optimization problem is the optimal solution of the original 

RBDO problem. 
 

4. Numerical examples 

In this section, two mathematical problems from Ref. [16] 

and a speed reducer design example from Ref. [20] are used to 

illustrate the efficiency of the proposed method. The optimal 

results of the proposed method are compared with those of the 

original SORA and the approaches in Ref. [16]. In this paper, 

all optimization problems are solved by means of the “fmin-

con” function in the software Matlab. 

 

4.1 Problem 1 with linear constraints 

In this problem, the objective function is nonlinear and the 

performance functions are linear. All input variables are normal 

distributed 1 6( )X X∼  with the distributions as ( , ),i iN µ σ  

1 6i= ∼ . The target reliability is 0.99865 (3)=Φ  for each 

constraint [16]. The mathematical formulation of this RBDO 

is: 

 
2

31 2 4
5 6

3

1 1 2

2 1 3 6

3 1 4 5

4 2 6

1 2 3

4 5 6

min  ( )

. .  ( ( ) 0) ,     1 4

( ) ( 3 5)

( ) ( 2 10)

( ) ( 2 8)

( ) ( 7 2)

1 10,2 8,3 8

3 8,1 6,0.1 2 .

i i
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g x X X

g x X X X

g x X X X

g x X X

µ µ µ
µ µ

µ

µ µ µ

µ µ µ

−
= −

≤ ≥ = ∼

=− − + −

=− − − − +

=− + − −

=− − +

≤ ≤ ≤ ≤ ≤ ≤
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Xµ

                (24) 

 

Optimums of the original SORA (Orig. SORA), approaches 

in Ref. [16], and the ESORA with varying variances are given 

in Table 1. The number of function evaluation (NFE) is also 

listed. In both cases of 0.02r =  and 0.15r = , the proposed 

ESORA efficiently solves the RBDO problem with the start-

ing point as [5 5 5 5 3 1] , and the optimal solutions of 

ESORA is almost the same as those of Orig. SORA and ap-

proaches in Ref. [16]. Although the starting points and optimi-

zation method adopted in Ref. [16] are unknown, from Table 

1 the NFE in the ESORA is obviously less than those of Orig. 

SORA and approaches in Ref. [16]. The reason is that in 

ESORA the original RBDO problem is completely trans-

formed into a deterministic optimization because performance 

functions are all linear. 

The results of two cases of constant variances are shown in 

Table 2. Because each performance function is linear, the 

NFE in the ESORA is obviously less than those needed in 

Orig. SORA and approaches in Ref. [16]. 

4.2 Problem 2 with nonlinear constraints 

In this problem, there are two normal random design vari-

ables 1X  and 2X  with the mean values of 1 2,µ µ  and the 

standard deviations of 1 2,σ σ . Three performance functions 

are all nonlinear and the target reliability is 0.99865 (3)=Φ  

[16]. The mathematical formulation of this RBDO problem is: 

 

1 2

2 2
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2 2

1 2 1 2
2

3 2

1 2
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20
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=− −
+ +
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X
µ

   (25) 

Table 1. Results and comparison for example 1 with varying variances. 
 

 Approaches x  f  Cycles NFE 

Orig. SORAa 4 185 

Approach 1a 3 149 

Approach 2a 3 149 

Approach 3a 3 149 

Double loopa 

[1.0000, 8.0000, 

3.0000, 

8.0000, 6.0000, 

1.3236] 

-24.3472 

N/A 1804 
0.02r=  

ESORAb 

[1.0000, 8.0000, 

3.0000, 

8.0000, 6.0000, 

1.3236] 

-24.3472 N/A 71 

Orig. SORAa 6 388 

Approach 1a 4 224 

Approach 2a 3 192 

Approach 3a 4 224 

Double loopa 

[1.0000, 3.6479, 

3.0000, 8.0000, 

1.7444, 0.2603] 

-20.1406 

N/A 1629 

0.15r=  

ESORAb 

[1.0000, 3.6488, 

3.0000, 8.0000, 

1.7434, 0.2603] 

-20.1403 N/A 39 

 

aResults from Ref. [16], bResults from our computation. 

 

 
Table 2. Results and comparison for example 1 with constant variances. 
 

0.02iσ =  0.15iσ =  
 

Cycles NFE Cycles NFE 

Orig. SORAa 

Approach 1a 

Approach 2a 

Approach 3a 

3 135 3 135 

Double loopa N/A 1569 N/A 1793 

ESORAb N/A 63 N/A 47 

 
aResults from Ref. [16], bResults from our computation. 
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With the numerical tolerance of 0.01%, the optimal solu-

tions of ESORA with the cases of constant and varying vari-

ances are provided in Tables 3 and 4 respectively. From Ta-

bles 3 and 4, when the constant variances and the constant 

coefficient of variation increase, the NFE tends to increase and 

also the objective value. The performance measure at MPP of 

each probabilistic constraint is less than zero, which indicates 

that each design point is feasible. 

Tables 5 and 6 provide the cycles and NFE needed in the 

Orig. SORA, approaches in Ref. [16], and the ESORA. The 

ESORA efficiently solves the RBDO problem in two cycles 

for different cases of constant variances. The ESORA is more 

efficient than the double loop method since the NFE of the 

ESORA is less than that of double loop method. The cycles 

needed in the ESORA are all no more than those of Orig. 

SORA, and approaches in Ref. [16]. 

 

4.3 Speed reducer design example 

This example is derived from Ref [20], shown in Fig. 4. In 

this paper, it is modified as a RBDO problem including six 

random design variables and one deterministic design variable. 

The properties of design variables of the speed reducer are 

given in Fig. 7. All random variables are normally distributed. 

The system objective function f  is the speed reducer vol-

ume to be minimized. The RBDO formulation is: 

 

( )
( ) ( )
( )

6 7 6 7

4 6 5 7

2 2

1 2 3 3

2 2 3 3

1

2 2

min     0.7854 3.333 14.933 43.0934

                1.508 7.477

                0.7854

x x x x

x x x x

f x x x x

x µ µ µ µ

µ µ µ µ

= + −

− + + +

+ +

  

s.t. ( )0 , 1 11i iP g R i≤ ≥ = ∼  

 

where 

( )2

1 1 2 327 / 1 0g x x x= − ≤  : Upper bound on the bending 

stress of the gear tooth. 
2 2

2 1 2 3397.5 /( ) 1 0g x x x= − ≤  : Upper bound on the contact 

stress of the gear tooth. 

4 6

3 4

3 2 31.93 /( ) 1 0x xg x xµ µ= − ≤  : Upper bound on the trans-

verse deflection of the shaft 1. 

5 7

3 4

4 2 31.93 /( ) 1 0x xg x xµ µ= − ≤  : Upper bound on the trans-

Table 3. Optimal results of example 2 with constant variances. 
 

0.02iσ =  0.20iσ =  0.40iσ =  Design  

variables ESORA ESORA ESORA 

1µ  1.0598 1.5999 2.1282 

2µ  0.0100 0.0100 2.7788 

Objective 1.0698 1.6099 4.9070 

Constraints 

1g  -0.2544 -1.5302 -3.6083 

2g  -0.4872 -0.0611 -5.8340×10-11 

3g  -10.9405 -5.2181 -0.8593 

Cycles 2 2 2 

NFE 144 233 265 

 
Table 4. Optimal results of example 2 with varying variances. 
 

0.02ir =  0.10ir =  0.20ir =  Design  

variables ESORA ESORA ESORA 

1µ  1.0636 1.4282 2.2461 

2µ  0.0100 0.0100 3.8922 

Objective 1.0736 1.4382 6.1383 

Constraints 

1g  -0.2715 -2.4478 -4.1228 

2g  -0.4843 -0.1863 -2.0610×10-8 

3g  -11.5963 -8.3815 -0.3109 

Cycles 2 2 4 

NFE 96 92 350 
 

aResults from Ref. [16], bResults from our computation. 

 

Table 5. Comparisons of different approaches with constant variances 

for example 2. 
 

0.02iσ =  0.20iσ =  0.40iσ =  
 

Cycles NFE Cycles NFE Cycles NFE 

Orig. SORAa 

Approach 1a 

Approach 2a 

Approach 3a 

3 87 3 117 4 295 

Double loopa N/A 491 N/A 644 N/A 1004 

ESORAb 2 144 2 233 2 265 

 
Table 6. Comparison of different approaches with varying variances 

for example 2. 
 

0.02ir =  0.10ir =  0.20ir =  
 

Cycles NFE Cycles NFE Cycles NFE 

Orig. SORAa 6 141 13 289 18 795 

Approach 1a 3 81 3 90 6 369 

Approach 2a 3 81 3 90 4 268 

Approach 3a 3 81 3 90 5 329 

Double loopa N/A 491 N/A 626 N/A 794 

ESORAb 2 96 2 92 4 350 

 
aResults from Ref. [16], bResults from our computation. 
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Bearing group 2 Shaft 2
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7
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Fig. 4. Design variables of the speed reducer design. 
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verse deflection of the shaft 2: 

5 1 1/ 1100 0g A B= − ≤  : Upper bound on the stresses of 

the shaft 1: 

6 2 2/ 850 0g A B= − ≤  : Upper bound on the stresses of the 

shaft 2: 

7 2 3 40 0,g x x= − ≤  8 1 2/ 12 0g x x= − ≤  and 9g =  

1 2/ 5 0x x− + ≤  : Dimensional restrictions based on space; 

6 410 (1.5 1.9) / 1 0x xg µ µ= + − ≤  : Design condition for the 

shaft 1 based on experiences: 

7 511 (1.1 1.9) / 1 0x xg µ µ= + − ≤  : Design condition for the 

shaft 2 based on experiences. 

where 4

0.5
2

6

1

2 3

745
16.9 10 ,

x
A

x x

µ    = + ×     
 

6

3

1 0.1 xB µ=  and 

5

0.5
2

6

2

2 3

745
157.5 10

x
A

x x

µ    = + ×     
, 

7

3

2 0.1 xB µ= . 

 

The target reliability is 0.99865 (3)=Φ  for each probabil-

istic constraint. The optimal solutions obtained by the Orig. 

SORA and the ESROA with the constant variances as 

1 2 4 5 6 7, ,0.01, 0.02, 0.03, 0.005x x x x x xσ σ σ σ= = = =  are given 

in Table 8. The starting points are the same for both methods 

as [2.65 0.63 18 6.8 6.4 3.0 5.099] . The same strategy and 

condition are adopted for both methods that the convergent 

criterion is 0,  1 11ig i≤ = ∼  and 0.01% for the value of the 

objective function. From Table 8, the cycles and NFE needed 

in ESORA are both less than those of the Orig. SORA which 

indicates that the ESORA is more efficient than the Orig. 

SORA. 

The optimal solutions of Orig. SORA and ESORA with 

varying variances are provided in Table 9. The starting points 

are the same for both methods as [2.65 0.63 18 6.8  

6.4 3.0 5.099] . The convergent criterion is 0,  1 11ig i≤ = ∼  

and 0.01% for the value of objective function. For both cases 

of 0.008ir =  and 0.01ir = , the cycles and NFE needed in 

the ESORA are both much less than those of Orig. SORA 

especially when the value of constant coefficient of variation 

increases which indicates that the ESORA is much more effi-

cient than the Orig. SORA. 

 

5. Conclusions 

SORA is one of the most efficient single loop methods for 

dealing with RBDO. In this paper, an enhanced SORA is pro-

posed with the aim of further improving the computational 

efficiency considering both cases of constant and varying 

variances while keeping the single loop framework. In the 

ESORA, when the performance functions are linear, the origi-

nal RBDO problem is completely transformed into a determi-

nistic optimization problem. When the performance functions 

are not all linear, in the deterministic optimization, the gradi-

ent at the actual MPP is approximated using the actual MPP 

Table 7. Distribution details of random design variables in the speed reducer design. 
 

Deterministic & 

random variables 
Description 

Standard 

deviation 
Distribution 

Lower 

bound 

Upper 

bound 

1x
µ  Mean of gear face width 0.01 Normal 2.6 3.6 

2x
µ  Mean of teeth module 0.01 Normal 0.3 1.0 

3x  Number of teeth of pinion - - 17 28 

4x
µ  Mean of distance between bearings 1 0.02 Normal 7.3 8.3 

5x
µ  Mean of distance between bearings 2 0.03 Normal 7.3 8.3 

6x
µ  Mean of diameter of shaft 1 0.005 Normal 2.9 3.9 

7x
µ  Mean of diameter of shaft 2 0.005 Normal 5 5.5 

 

 

Table 8. Optimal solutions of speed reducer design with constant vari-

ances. 
 

Design variables Orig. SORA ESORA 

1x
µ  3.6000 3.6000 

2x
µ  0.6863 0.6863 

3x
µ  18 18 

4x
µ  7.3000 7.3000 

5x
µ  7.9270 7.9269 

6x
µ  3.3669 3.3668 

7x
µ  5.3023 5.3022 

Objective  3087.6573 3087.6572 

Constraints  

1g  -0.0936 -0.0935 

2g  -0.2403 -0.2403 

3g  -0.5154 -0.5153 

4g  -0.8991 -0.8991 

5g  -16.4314 -16.4314 

6g  -7.4804 -7.4803 

7g  -27.9441 -27.9440 

8g  -6.7546 -6.7545 

9g  -0.2454 -0.2454 

10g  -0.0479 -0.0478 

11g  -0.0245 -0.0245 

Cycles 4 3 

NFE 3255 2376 
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and the mean values of random variables of previous cycle, 

and the mean values of random variables of current cycle 

while the gradient is approximated at the mean value of the 

random design variables and parameters at the first cycle. 

As demonstrated by the examples, the ESORA performs 

more efficiently compared with the current approaches when 

the performance functions are all linear. The cycles needed in 

ESORA for RBDO with nonlinear constraints are not more 

than those needed in the compared approaches while the NFE 

can be reduced using the same starting points and optimization 

methods in the compared approaches. In the speed reducer 

deign example, the same starting points and the optimization 

method are utilized, the cycles and NFE of ESORA are much 

less than those of the original SORA especially when the val-

ue of constant coefficient of variation increases, which indi-

cates that the ESORA is much more efficient than the original 

SORA. 

 

Acknowledgment 

This research was partially supported by the National Natu-

ral Science Foundation of China under contract number 

51075061, the National High Technology Research and De-

velopment Program of China (863 Program) under contract 

number 2007AA04Z403, and The Fundamental Research 

Funds for the Central Universities of China under contract 

number ZYGX2010J093. 

 

References 

[1] S. Kim, S. Jun, H. Kang, Y. Park and D. H. Lee, Reliability 

based optimal design of a helicopter considering annual 

variation of atmospheric temperature, Journal of Mechanical 

Science and Technology, 25 (5) (2011) 1095-1104. 

[2] Y. J. Park, S. Jun, S. Kim and D. H. Lee, Design optimiza-

tion of a loop heat pipe to cool a lithium ion battery onboard 

a military aircraft, Journal of Mechanical Science and Tech-

nology, 24 (2) (2010) 609-618. 

[3] Z. Wang, G. Li, H-Z Huang, X. L. Zhang and Y. Li, Reli-

ability-based design optimization for box-booms considering 

strength degradation and random total working time, Journal of 

Mechanical Science and Technology, 26 (7) (2012) 2045-2049. 

[4] H. Z. Huang, X. Zhang, D. B. Meng, Y. Liu and Y. F. Li, Mul-

tidisciplinary design optimization with discrete and continuous 

variables of various uncertainties, International Journal of 

Computational Intelligence Systems, 5 (1) (2012) 93-110. 

[5] H. Z. Huang, H. Yu, X. Zhang, S. Zeng and Z. Wang, Col-

laborative optimization with inverse reliability for multidis-

ciplinary systems uncertainty analysis, Engineering Optimi-

zation, 42 (8) (2010) 763-773. 

[6] H. Z. Huang and X. Zhang, Design optimization with dis-

crete and continuous variables of aleatory and epistemic un-

certainties, Journal of Mechanical Design, 131 (3) (2009) 

031006-1-031006-8. 

[7] J. Tu and K. K. Choi, A new study on reliability based de-

sign optimization, Journal of Mechanical Design, 121 (4) 

(1999) 557-564. 

[8] B. D. Youn and K. K. Choi, Selecting probabilistic ap-

proaches for reliability-based design optimization, AIAA 

Journal, 42 (1) (2004) 124-131. 

[9] B. D. Youn, K. K. Choi and L. Du, Enriched performance 

measure approach for reliability based design optimization, 

AIAA Journal, 43 (4) (2005) 874-884. 

[10]   B. D. Youn, K. K. Choi and Y. H. Park, Hybrid analysis 

method for reliability-based design optimization, Journal of 

Mechanical Design, 125 (2) (2003) 221-232. 

[11]   B. D. Youn, K. K. Choi and L. Du, Adaptive probability 

analysis using an enhanced hybrid mean value method, 

Structural and Multidisciplinary Optimization, 29 (2) (2005) 

134-148. 

[12]   X. Du and W. Chen, A most probable point based method 

for uncertainty analysis, Proc. of ASME 2000 DETC/CIE, 

Baltimore, Maryland, USA (2000) DETC2000/DAC-14263. 

[13]   Y. T. Wu, Y. Shin, R. H. Sues and M. A. Cesare, Safety 

factor based approach for probability based design optimiza-

tion, Proc. of 42nd AIAA/ASME/ASC/AHS/ASC SDM Con-

ference and Exhibition Seattle, Washington, USA (2001) 

AIAA-2001-1522. 

[14]   X. Du and W. Chen, Sequential optimization and reliability 

Table 9. Optimal solution of speed reducer design with varying vari-

ances. 
 

0.008ir =  0.01ir =  
Design 

variables Orig.  

SORA 
ESORA 

Orig.  

SORA 
ESORA 

1x
µ  3.6000 3.6000 3.6000 3.6000 

2x
µ  0.6825 0.6824 0.6871 0.6871 

3x
µ  17 17 17 17 

4x
µ  7.3000 7.3000 7.3761 7.3760 

5x
µ  8.0870 8.0870 8.2000 8.2000 

6x
µ  3.4330 3.4329 3.4543 3.4542 

7x
µ  5.4169 5.4168 5.4504 5.4504 

Objective 3067.7527 3067.7526 3120.6480 3120.6480 

Constraints 

1g  -0.0527 -0.0528 -0.0656 -0.0656 

2g  -0.1797 -0.1796 -0.1908 -0.1908 

3g  -0.5340 -0.5341 -0.5343 -0.5342 

4g  -0.8978 -0.8978 -0.8968 -0.8967 

5g  -77.3238 -77.3238 -96.0708 -96.0708 

6g  -59.7486 -59.7486 -74.2351 -74.2352 

7g  -28.3983 -28.3982 -28.3186 -28.3186 

8g  -6.7249 -6.7249 -6.76088 -6.76089 

9g  -0.2751 -0.2750 -0.2391 -0.2391 

10g  -0.0343 -0.0343 -0.0399 -0.0399 

11g  -0.0282 -0.0282 -0.0371 -0.0371 

Cycles 8 4 5 4 

NFE 8796 4412 5280 4271 

 

 



 H.-Z. Huang et al. / Journal of Mechanical Science and Technology 27 (6) (2013) 1781~1789 1789 

 

  

assessment method for efficient probabilistic design, Journal 

of Mechanical Design, 126 (2) (2004) 225-233. 

[15]   T. M. Cho and B. C. Lee, Reliability-based design optimi-

zation using convex approximations and sequential optimi-

zation and reliability assessment method, Journal of Me-

chanical Science and Technology, 24 (1) (2010) 279-283. 

[16]   X. L. Yin and W. Chen, Enhanced sequential optimization 

and reliability assessment method for probabilistic optimiza-

tion with varying design variance, Structures and Infrastruc-

ture Engineering, 2 (3-4) (2006) 261-275. 

[17]   J. Liang, Z. P. Mourelatos and J. Tu, A single-loop method 

for reliability-based design optimization, Proc. of ASME 

2004 IDETC/CIE, Salt Lake City, UT, USA (2004) 419-430. 

[18]   S. Shan and G. G. Wang, Reliability design space and com-

plete single-loop reliability-based design optimization, Reli-

ability Engineering & System Safety, 93 (8) (2008) 1218-1230. 

[19]   R. Rackwitz and B. Flessler, Structural reliability under 

combined random load sequences, Computers & Structures, 

9 (5) (1978) 489-494. 

[20]   L. Du and K. K. Choi, An inverse analysis method for de-

sign optimization with both statistical and fuzzy uncertain-

ties, Structural and Multidisciplinary Optimization, 37 (2) 

(2008) 107-119. 

 

 

Hong-Zhong Huang is a professor and 

the Dean of the School of Mechanical, 

Electronic, and Industrial Engineering, 

University of Electronic Science and 

Technology of China. He has held visit-

ing appointments at several universities 

in the USA, Canada, and Asia. He re-

ceived a Ph.D. degree in Reliability 

Engineering from Shanghai Jiaotong University, China and 

has published 150 journal papers and 5 books in fields of reli-

ability engineering, optimization design, fuzzy sets theory, and 

product development. He is a Fellow of ISEAM (International 

Society of Engineering Asset Management), and a member of 

ESRA (European Safety and Reliability Association) Techni-

cal Committee on System Reliability, a Regional Editor of 

International Journal of Reliability and Applications, an Edito-

rial Board Member of International Journal of Reliability, 

Quality and Safety Engineering, International Journal of Qual-

ity, Statistics, and Reliability, International Journal of Reliabil-

ity and Quality Performance, International Journal of Perform-

ability Engineering, Advances in Fuzzy Sets and Systems, and 

The Open Mechanical Engineering Journal. He received the 

William A. J. Golomski Award from the Institute of Industrial 

Engineers in 2006, and the Best Paper Award of the 8th Inter-

national Conference on Frontiers of Design and Manufacturing   

in 2008. His current research interests include system reliabil-

ity analysis, warranty, maintenance planning and optimization, 

computational intelligence in product design. 

 

Xudong Zhang received the B.S. de-

gree in Mechanical Engineering from 

Jiangnan University and Ph.D. degree 

from University of Electronic Science 

and Technology of China. His main 

research interests include reliability 

based design and optimization, reliabil-

ity based multidisciplinary design and 

optimization. 

 

De-Biao Meng is currently a Ph.D. stu-

dent studying at the University of Elec-

tronic Science and Technology of China. 

He received a B.S. degree in Mechanical 

Engineering from Northwest A&F Uni-

versity. His main research interests in-

clude reliability based design and opti-

mization, reliability based multidiscipli-

nary design and optimization. 

 

Zhonglai Wang received the Ph.D. 

degree in Mechatronics Engineering 

from the University of Electronic Sci-

ence and Technology of China. He is 

currently the associate professor in the 

School of Mechanical, Electronic, and 

Industrial Engineering at University of 

Electronic Science and Technology of 

China. He has been a visiting scholar in the Department of 

Mechanical and Aerospace Engineering, Missouri University 

of Science and Technology from 2007 to 2008. His research 

interests include reliability-based design and robust design. 

 

Yu Liu is an Associate Professor in the 

School of Mechanical, Electronic, and 

Industrial Engineering, at the University 

of Electronic Science and Technology of 

China. He received his Ph.D. degree in 

Mechatronics Engineering from the 

University of Electronic Science and 

Technology of China. He was a Visiting 

Pre-doctoral Fellow in the Department of Mechanical Engi-

neering at Northwestern University, Evanston, U.S.A. from 

2008 to 2010. His research interests include system reliability 

modeling and analysis, maintenance decisions, prognostics 

and health management, and design under uncertainty.  

 

 

 


