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Bayesian Degradation Analysis With Inverse
Gaussian Process Models Under Time-Varying

Degradation Rates
Weiwen Peng, Yan-Feng Li, Yuan-Jian Yang, Jinhua Mi, and Hong-Zhong Huang, Member, IEEE

Abstract—Degradation observations of modern engineering
systems, such as manufacturing systems, turbine engines, and high-
speed trains, often demonstrate various patterns of time-varying
degradation rates. General degradation process models are mainly
introduced for constant degradation rates, which cannot be used
for time-varying situations. Moreover, the issue of sparse degrada-
tion observations and the problem of evolving degradation obser-
vations both are practical challenges for the degradation analysis
of modern engineering systems. In this paper, parametric inverse
Gaussian process models are proposed to model degradation pro-
cesses with constant, monotonic, and S-shaped degradation rates,
where physical meaning of model parameters for time-varying
degradation rates is highlighted. Random effects are incorporated
into the degradation process models to model the unit-to-unit
variability within product population. A general Bayesian frame-
work is extended to deal with the degradation analysis of sparse
degradation observations and evolving observations. An illustra-
tive example derived from the reliability analysis of a heavy-duty
machine tool’s spindle system is presented, which is characterized
as the degradation analysis of sparse degradation observations
and evolving observations under time-varying degradation rates.

Index Terms—Bayesian reliability, degradation model, degrada-
tion rate, inverse Gaussian process, random effect.

NOMENCLATURE

IG Inverse Gaussian.
PDF Probability density function.
CDF Cumulative distribution function.
MLE Maximum likelihood estimation.
Y (t) Degradation process.
Λ(t) Mean function of an inverse Gaussian pro-

cess.
λ Scale parameter of an inverse Gaussian

process.
IG(Λ(t), λΛ2(t)) Inverse Gaussian process.
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f(y(t)) Probability density function of Y (t) at
time instant t.

R(t) Reliability function under the degradation
process Y (t).

Φ(•) Cumulative distribution of a standard
s-normal distribution.

r(t) Degradation rate function.
g(•|δ, γ) Probability density function of a gamma

distribution.
θ Vector of model parameters.
π(θ) Prior distribution of model parameter θ.
Y Matrix of degradation observations.
θR

i Random effect parameter of the ith unit.
θH Hyper-parameter in a random effect

model.
L(Y|θ) Likelihood function of degradation obser-

vations Y.
p(θ|Y) Posterior distribution of model parameters.
θ̃ Posterior sample of model parameters.
Δy Degradation increment of a degradation

process Y (t).

I. INTRODUCTION

NOWADAYS, companies of modern engineering systems,
such as manufacturing systems, commercial airplanes,

and high-speed trains, are under great pressures to deliver
competitive products with high reliability. The reliability of
these systems has become a critical issue both for the desire
of high availability, and for the pursuit of high safety. Various
degradation analysis methods are developed for product relia-
bility analysis [1]–[3] and system health management [4], [5].
Generally, in the degradation analysis, an indicator is identified
as the manifestation of some hidden or unobservable failure
processes of a product. The product fails when this indicator
reaches a predefined threshold [6]. Examples of indicators in-
clude vibration signal for bearings [7], oil debris for lubrication
[8], crack length for gears [9], and fatigue damage for structures
[10], [11]. In the degradation analysis of modern engineering
systems, two typical situations are often encountered: 1) sparse
degradation observations obtained for a product that can only be
observed at intermittent discrete time points [12], and 2) evolv-
ing degradation observations generated for a product that is
subject to a process of continual monitoring. A classic example
of the degradation analysis with sparse degradation observations
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Fig. 1. Examples of constant, monotonic, and S-shaped degradation rates and relevant degradation observations.

and evolving observations, which motivates the study presented
in this paper, is from the reliability analysis of a heavy-duty
machine tool’s spindle system. To ensure high productivity
and low total cost of ownership, the machining accuracy,
positioning accuracy, and oil debris of the spindle system
can be monitored for the reliability analysis [13]–[15]. Due
to the difference of measurement techniques, the positioning
accuracy is measured sparsely during the spare time of machine
tools, generating sparse degradation observations. However,
the oil debris is monitored continually, generating evolving
degradation observations.

To implement the degradation analysis, various degradation
models are proposed to characterize different types of degra-
dation observations [3], [16]. One type of degradation models
is the degradation path model. Recent applications of degra-
dation path models were presented for degradation analysis
[17], [18], degradation test planning [19], [20], and system reli-
ability modeling [21], [22]. Another type of degradation models
is the stochastic-process-based degradation model. Recently,
the gamma process models [23]–[25] and the Wiener process
models [26]–[28] have been investigated extensively. However,
the idea of degradation rate has not been highlighted and in-
vestigated thoroughly. To handle the situation with sparse or
evolving degradation observations, a parametric description of
the degradation rate is critical. This is out of the consideration
that the degradation rate is an interpretation of a hidden failure
mechanism of a product. It is also a direct description of the pat-
tern of a degradation process, which can facilitate the empirical
model selection by associating the failure mechanism with the
degradation pattern. A pictorial description of degradation rates,
including constant, increasing, and S-shaped degradation rates,
and the relevant degradation processes is presented in Fig. 1.

In addition, another benefit to incorporate the parametric
degradation rate is that subjective information integration and
model updating can be implemented coherently. By specify-

ing probability distributions and updating the probability dis-
tributions for parameters of degradation models, subjective
information integration for sparse degradation observations and
model updating for evolving degradation observations can be
implemented.

However, considering the degradation processes with mono-
tonic increments, one challenge for the degradation models sum-
marized above is the modeling of degradation processes with
time-varying degradation rates. This is because the degradation
path models with Gaussian measurement errors and degrada-
tion process models based on the Wiener process both have
nonmonotonic increments. In addition, neither gamma pro-
cess model nor nonparametric degradation model has analyt-
ical degradation rate for degradation modeling. Accordingly,
the degradation analysis with time-varying degradation rates
deserves further investigation.

In this paper, we propose a Bayesian method for the
degradation analysis of degradation processes with constant,
monotonic, and S-shaped degradation rates. These degradation
models are proposed through the specification of parametric
mean function of an IG process, which has been demonstrated
as a flexible family for degradation modeling by Wang
and Xu [29], Zhang et al. [30], Ye and Chen [31], Peng
et al. [32], and Peng et al. [33]. A coherent Bayesian framework
is constructed for the degradation analysis with the IG process
models by extending the Bayesian framework introduced in our
previous work [32]. Incorporation of subjective information for
sparse degradation observations situation and updation of the
degradation analysis for continual monitoring situation are han-
dled within the Bayesian framework. We demonstrated the pro-
posed method through the degradation analysis of a heavy-duty
machine tool’s spindle system. Model selection and comparison
are studied in this illustrative example. The degradation analysis
using the proposed IG process models is compared with the
results obtained from the Wiener and gamma processes models.
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The remainder of this paper is organized as follows. Section II
introduces the IG process models for degradation modeling with
constant, monotonic, and S-shaped degradation rates. Section III
presents a general Bayesian framework for the degradation anal-
ysis with the IG process models. An illustrative example is then
presented in Section IV to demonstrate the implementation of
the Bayesian framework and the proposed IG process models
for the degradation analysis. We then conclude the paper in
Section V with remarks for future research.

II. IG PROCESS MODELS WITH CONSTANT, MONOTONIC, AND

S-SHAPED DEGRADATION RATES

Assume the degradation process {Y (t), t ≥ 0} of a unit
follows an IG process. Y (t) has s-independent incre-
ments and Y (t + Δt) − Y (t) follows an IG distribution as
IG(ΔΛ, λΔΛ2) with ΔΛ = Λ(t + Δt) − Λ(t), Y (0) ≡ 0, and
λ > 0 [31], [32]. Given a predefined failure threshold D for the
degradation process Y (t), the PDF of Y (t) and the correspond-
ing reliability function of the unit are separately given as

f (y (t) |Λ (t) , λ) =

√
λΛ2 (t)
2πy(t)3 exp

[
−λ(y (t) − Λ (t))2

2y (t)

]

(1)

R (t|Λ (t) , λ) = Φ

[√
λ

D
(D − Λ(t))

]

+ exp (2λΛ(t)) Φ

[
−
√

λ

D
(D + Λ(t))

]
.

(2)

The degradation process of the unit is then described as
Y (t) ∼ IG(Λ(t), λΛ2(t)). It has a degradation mean given as
Λ(t) and a degradation variance given as Λ(t)/λ. In order
to model the degradation process with constant, monotonic,
and S-shaped degradation rates, parametric functions are intro-
duced for the degradation mean function Λ(t). The degradation
rate function r(t) is defined based on the degradation mean
function as

r (t) =
∂Λ (t)

∂t
. (3)

The degradation rate function is a quantitative description of
the approximated slope or steepness of the degradation curve.
A bigger value of r(t) indicates a faster degradation rate, which
means that a larger degradation increment ΔY (t) is observed
within a time interval Δt. In addition, the functional relation-
ship between the degradation rate r(t) and the observation time
t is a description of the changing of the degradation process
over time. Accordingly, based on the idea of incorporating para-
metric function of degradation rate, the IG process models for
degradation processes with constant, monotonic, and S-shaped
degradation rates are introduced.

A constant degradation rate rC (t) is corresponding to a degra-
dation process with steady degradation velocity ΛC (t), such as
the linear degradation curve in Fig. 1 (left). The degradation
mean function with constant degradation rate is mathematically

modeled as

ΛC (t) =
∫

rC (t)dt = μt, μ > 0. (4)

A monotonic degradation rate rM (t) is related to the degra-
dation process for which the degradation velocity is gradually
getting deteriorative (alleviative) for an increasing (decreasing)
degradation rate, such as the one presented in Fig. 1 (middle).
The degradation mean function with monotonic degradation rate
is mathematically modeled as

ΛM (t) =
∫

rM (t)dt =
(

t

η

)β

, β > 0, η > 0. (5)

The idea of this degradation rate function originates from
the failure rate of a Weibull distribution [34]. The parameters
β and η are separately shape parameter and scale parameter.
The shape of the degradation rate depends on the parameter
β: 0 < β < 1 leads to a decreasing degradation rate; β > 1
leads to an increasing degradation rate; and β = 1 leads to a
constant degradation rate, which equals to the IG process model
introduced above with rC (t) = 1/η.

An S-shaped degradation rate rS (t) is introduced for a
complicated degradation process, which is presented in Fig. 1
(right). It describes a deteriorative process in the beginning, an
alleviative process following on, a stable process for a relative
long time, and finally, a deteriorative process until failure.
The degradation mean function with the S-shaped degradation
rate is mathematically modeled as

ΛS (t) =
∫

rS (t)dt = ν exp

(
α

(
t

ν

)
− ω

(
t

ν

)−1
)

,

{
α > 0, ω > 0,
ν > 0.

(6)

The parameter α is a shape parameter of the degradation
rate function. The degradation rate has an S-shaped curve
when 0 < α < 0.25, and an increasing degradation rate when
α ≥ 0.25. The parameters ω and ν are the scale parameters of
the degradation rate function. The parameter ω adjusts the dis-
persion of the upside-down part of the S-shaped degradation rate
function, which takes the value 0 < ω < 1 when an S-shaped
degradation rate is introduced by the parameter. The parameter
ν moderates the overall dispersion of the S-shaped degradation
rate function.

By submitting the corresponding degradation mean functions
given above into (1) and (2), the PDF and reliability function un-
der the IG process degradation model with time-varying degra-
dation rates can be obtained. When heterogeneous degradation
rates within a population are considered, a common practice to
incorporate random effect into the IG process model is to let a
specific parameter with clear physical interpretation to vary ran-
domly across units [31], [32]. For the degradation process mod-
els with constant, monotonic, and S-shaped degradation rates,
practical ways to incorporate random effects are separately to
let μ (rate parameter), η (scale parameter), and ν (scale param-
eter) follow a specific probability distribution. To demonstrate
this idea, let the scale parameter ν of an S-shaped degradation
rate follow a gamma distribution as ν ∼ Gamma(δν , γν ). The
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Fig. 2. General Bayesian framework for the IG process models: elicitation of prior distributions.

IG process model with S-shaped degradation rate and ran-
dom effect is given as YSE(t) ∼ IG(ΛS (t), λSEΛS (t)2) with
ΛS (t) = ν exp(α(t/ν) − ω(t/ν)−1) and ν ∼ Gamma(δν , γν ).
The PDF and reliability function of the S-shaped degradation
model with random effect are given as

fSE (y (t) |α, ω, δν , γν , λSE)

=
∫

ν>0

(
f (y (t) |ΛS (t) , λSE)
× gν (ν|δν , γν )

)
dν (7)

RSE (t|α, ω, δν , γν , λSE) =
∫

ν>0

(
R (t|ΛS (t) , λSE)
× gν (ν|δν , γν )

)
dν.

(8)

III. GENERAL BAYESIAN FRAMEWORK FOR THE IG
PROCESS MODELS

We extend the Bayesian framework presented in our previous
work [32] in this section to handle the difficulties introduced
by the situation with sparse degradation observations, and the
situation with evolving observations. In detail, the method for
prior derivation presented in [32] is extended and presented in
Fig. 2. Three situations are considered for the prior derivation:
the situation with sparse observations, the situation with evolv-
ing observations, and the situation with heterogeneous obser-
vations due to random effects, which are presented as separate
blocks in Fig. 2. Different strategies can be chosen from the prior
derivation methods based on the actual situation encountered.

For the situation with sparse degradation observations, one
difficulty is that the observations cannot be readily analyzed to
determine the parametric form of the underlying degradation
model. To solve this problem, the strategies for subjective
information quantification and multiple information fusion
are used to facilitate the degradation analysis. As presented
in Fig. 2, experts’ experience and historical information are
used to supplement the sparse degradation observations. Com-
monly, it is difficult to elicit experts’ probabilities for model
parameters of general degradation models, due to the lack of
explicit physical interpretation of these model parameters [35].
However, this difficulty can be overcome by utilizing the idea
of degradation rate and degradation mean functions. In detail,
experts’ experience and historical information are used to elicit
probabilities on the degradation mean at a specific time point,

and on the shape parameter of a degradation function as well.
Both of these parameters have explicit physical interpretation,
such as the degradation mean is a description of the average
degradation level at a specific time, and the shape parameter
of a degradation function is related to the characteristics of
the degradation process with constant, monotonic, or S-shaped
degradation rate. Accordingly, subject information can be
quantified with methods for expert elicitation [36] and prior
derivation [37] based on these physical interpretations. Given
the prior distributions for degradation mean and shape param-
eter, prior distributions for the remaining model parameters
can then be obtained through multivariate transformation by
utilizing the function relationship between the degradation
mean function and model parameters. Take the IG process
model with monotonic degradation rate as an example, which
is given in (5). Experts’ experience and historical information
are first quantified into the probability distributions π(ΛM (t))
and π(β). The prior distribution for scale parameter of the IG
process model with monotonic degradation rate can be obtained
through the function relationship described by (5) as follows:

π (η) =
{

η : η = t(ΛM (t))−1/β

∣∣∣∣ΛM (t) ∼ π (ΛM (t))
β ∼ π (β)

}
.

(9)
The probability distribution π(η) can be obtained analytically

or through simulation-based methods. For a simulation-based
method, the procedure is given as follows:

1) generate samples from the probability distributions of
π(ΛM (t)) and π(β),

2) obtain samples for parameter η based on the samples of
π(ΛM (t)) and π(β) through the given function relation-
ship, and

3) fit a suitable probability distribution to these samples to
get π(η).

For the situation with evolving degradation observations, the
idea of model updating is used for prior derivation as presented
in Fig. 2. The posterior distribution for the K–1th degradation
observations YK − 1 is used as the prior distribution for the Kth

degradation observations. The estimation results obtained from
the K–1th degradation observations are then updated coherently
by incorporating the information of the Kth degradation obser-
vations without reanalyzing K–1th degradation observations. In
practical application, it is often difficult to obtain an analytical
form of the posterior distribution for the K–1th degradation ob-
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servations YK−1 , which causes difficulty for directly using this
posterior distribution as priors for the Kth degradation obser-
vations. To solve this problem, posterior samples are obtained
from the K–1th degradation observations through Markov chain
Monte Carlo simulation (MCMC), and these posterior sam-
ples are further fitted to specific probability distributions. These
fitted probability distributions are used as prior distributions
in the following degradation analysis of the Kth degradation
observations.

In addition, the method of hierarchical priors is used for
the degradation analysis with random effects. Let θR

i with
i = 1, ..., n denote the random effect parameter within a pop-
ulation group with sample size n, and θH denote the hyper-
parameter, which is the parameter of the probability distribution
of the θR

i . Take the IG process model with S-shaped degra-
dation rate and random effect as an example, which is
given as YSE(t) ∼ IG(ΛS,i(t), λSEΛS,i(t)

2) with ΛS,i(t) =
νi exp(α(t/νi) − ω(t/νi)

−1) and νi ∼ Gamma(δν , γν ), the
random effect parameter θR

i includes νi , and the hyper-
parameter θH includes δν and γν . Furthermore, let π(θR

i |θH )
denote the prior distribution for the random effect parameter θR

i ,
which is unique for the ith individual sample. π(θH ) is the prior
distribution for the hyper-parameter, which is the same for all
the prior distributions π(θR

i |θH ) with i = 1, ..., n. The connec-
tion among individual samples within the product population is
constructed by the prior distribution of hyper-parameter π(θH ).
As a result, random effect information within the product popu-
lation is integrated through these hierarchical prior distributions.
To derive the hierarchical priors in practical applications, sub-
jective information is used to choose a probability distribution
to characterize the individuality of the random effect param-
eter. The probability distributions often used for random ef-
fect parameter within the IG process degradation model include
the truncated normal distribution, gamma distribution, and log-
normal distribution [31], [32]. In addition, the method of prior
derivation described above for sparse degradation observations
can be used to obtained priors for random effect parameters with
clear physical meanings. For the hyper-parameters, diffuse pri-
ors such as uniform distributions with large intervals and gamma
distribution with large variance are often used. This is due to
the consideration that there is no direct physical meaning of the
hyper-parameters, and it is impractical to directly quantify prior
information into the hyper-parameters.

IV. ILLUSTRATIVE EXAMPLE: RELIABILITY ANALYSIS OF A

HEAVY-DUTY MACHINE TOOL’S SPINDLE SYSTEM

The spindle system of a heavy-duty machine tool transmits
the required energy and rotates the tool precisely to implement
high-precision machining processes, such as grinding, milling,
and drilling. It has a significant impact on the material removal
rate and the final quality of machined parts [38]. The spindle sys-
tem of a machine tool is consequently expected to demonstrate
high reliability and availability. Tense condition monitoring and
health management are implemented on the spindle system. The
bearings, ball screw, and gears are generally responsible for the
failures of the spindle system. The monitoring of the machining
accuracy, positioning accuracy, and the amount of debris in the

TABLE I
DEGRADATION OBSERVATIONS OF POSITIONING ACCURACY

Sample 1 Time 26 28 32 46 78 88 92 154 180
Observations 70 72 77 101 157 196 205 312 362

Sample 2 Time 18 22 44 52 70 118 132 160 180
Observations 4 8 20 32 49 71 75 99 115

Sample 3 Time 26 28 50 86 106 128 134 138 178
Observations 38 39 97 165 223 273 277 284 375

Sample 4 Time 22 40 42 44 66 110 160 162 174
Observations 25 36 38 39 56 91 153 153 168

Sample 5 Time 44 64 92 94 110 114 120 124 148
Observations 43 75 110 116 142 144 155 164 189

Fig. 3. Degradation observations of positioning accuracy.

lubricant oil (oil debris) are used to track the deterioration of
these units. In this section, the IG process models introduced
above are implemented to the degradation analysis of the spindle
system using the proposed Bayesian framework.

To avoid proprietary issues, the units of values are omitted,
and the data are modified in a certain way. Largely, however, the
characteristics of the degradation observations, and the appli-
cation of the proposed IG process degradation models and the
Bayesian method are the same as the original.

A. Degradation Analysis of Positioning Accuracy: IG Process
Model With Constant Degradation Rate and Random Effects

Five spindle systems have been measured in a period of six
months. Due to the limitation of cost and measuring technique,
the measurements of positioning accuracy of these spindle sys-
tem are implemented discretely. As a result, a group of sparse
degradation observations are observed, and presented in Table I
and Fig. 3.

Let YCE(tij) with j = 1, ...,mi and i = 1, ..., 5 be the jth
observation for sample i at observation time tij , where mi is
the number of observations of the ith sample. Let ΔyCE

ij =
YCE(tij) − YCE(ti,j−1) be the degradation increment. Then,
under the IG process degradation model with constant degra-
dation rate and random effect, ΔyCE

ij are independent and fol-

low IG distribution IG(ΔΛCE
ij , λCE(ΔΛCE

ij )2) with ΔΛCE
ij =

μitij − μiti,j−1 and μi ∼ Gamma(δμ , γμ).
Following the framework presented in Fig. 2, experts’ expe-

rience and historical information are used to derive probability
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distribution of the degradation mean μt and degradation vari-
ance μt/λ at a serial of observation points. Similar to the trans-
formations of random variables presented in (9), these derived
distributions are transformed to the prior distributions of model
parameters θ = {δμ , γμ , λCE} as

{
δμ∼Gamma (20, 2) , γμ ∼Gamma (15, 1.5) ,

λCE ∼Lognormal
(
0.3, 0.32

) (10)

where Lognormal(0.3, 0.32) is a log-normal distribution.
The likelihood function for the degradation observations of

positioning accuracy is given as (11) at the bottom of the page,
where μ= (μ1 , . . . , μ5).

Based on the prior distributions and the likelihood function,
the Bayesian estimation of model parameters, which is the joint
posterior distribution of model parameters, is obtained as (12)
at the bottom of the page.

The MCMC method is used to simulate samples of model
parameters from the joint posterior distribution in (12). For the
degradation analysis of positioning accuracy, 20 000 samples
are generated using the OpenBUGS [39]. Parameter estimation,
degradation inference, reliability assessment, and residual life
prediction are implemented based on the generated samples of
posterior distribution.

The degradation inferences for individual sample and the pop-
ulation are obtained based on the joint posterior distribution of
model parameters as shown in (13) and (14) at the bottom of the
page, where fC (yi,m+k |YCE) is the PDF of the degradation of

the ith sample at future time point ti,m+k , and fCE(yCE |YCE)
is the PDF of the degradation of the population at time point t.

The calculations of (13) and (14) are implemented using
Monte Carlo integration based on the posterior samples gen-
erated above. For the degradation inference at a specific time
point, 20 000 samples of degradation inference are obtained
based on the 20 000 posterior samples of related model pa-
rameters. The statistics of this degradation inference, such as
the mean, variance, and quantiles, are then obtained based
on its posterior samples. In detail, the degradation infer-
ence for the ith degradation curve is based on the samples
θ̃ = {μ̃i , λ̃CE} from p(μi, λCE |YCE), and the IG distribution

IG(ΔΛ̃CE
ij , λ̃CE(ΔΛ̃CE

ij )
2
) with ΔΛ̃CE

ij = μ̃itij − μ̃iti,j−1 . The
degradation inference for the population is based on the samples
θ̃ = {δ̃μ , γ̃μ , λ̃CE} from p(δμ , γμ , λCE |YCE), and the IG distri-

bution IG(ΔΛ̃CE
j , λ̃CE(ΔΛ̃CE

j )
2
) with ΔΛ̃CE

j = μ̃tj − μ̃tj − 1

and μ̃ ∼ Gamma(δ̃μ , γ̃μ).
For the degradation of positioning accuracy, there are ten

degradation observations for each sample. The first seven ob-
servations are used to estimate model parameters. The remaining
three observations are retained as cross-validation observations.
To test the precision of degradation inference, the error of the
degradation inference is defined as

error =
|inferred degradation − observed degradation|

observed degradation
. (15)

Based on the 20 000 posterior samples of model parameter,
a group of 20 000 samples of degradation inferences and the

L (YCE , μ|δμ , γμ , λCE) =
5∏

i = 1

gμ (μi |δμ , γμ)
mi∏

j = 2

f
(
ΔyCE

ij |ΔΛCE
ij , λCE

)

=
5∏

i = 1

γ
δμ
μ μ

δμ −1
i

Γ (δμ)
exp (−γμμi)

mi∏
j = 2

√√√√√√λCE

(
ΔΛCE

ij

)2

2π
(
ΔyCE

ij

)3 exp

[
−λCE

(
ΔyCE

ij − ΔΛCE
ij

)2
2ΔyCE

ij

]
(11)

p (μ, δμ , γμ , λCE |YCE) ∝ π (δμ , γμ , λCE) L (YCE , μ|δμ , γμ , λCE)

∝ δμ
20 − 1 exp (−2δμ) γμ

15 − 1 exp (−1.5γμ) λ−1
CE exp

(
− (ln λCE − 0.3)2

2 × 0.32

)

×
5∏

i = 1

⎧⎪⎪⎨
⎪⎪⎩

γ
δμ
μ μ

δμ −1
i

Γ (δμ)
exp (−γμμi)

mi∏
j = 2

√√√√√√λCE

(
ΔΛCE

ij

)2

2π
(
ΔyCE

ij

)3 exp

[
−λCE

(
ΔyCE

ij − ΔΛCE
ij

)2
2ΔyCE

ij

]⎫⎪⎪⎬
⎪⎪⎭

(12)

fC (yi,m+k |YCE) =
∫

μi ,λC E

f (yi,m+k |ΛC (ti,m+k ) , λCE) p (μi, λCE |YCE) dμidλCE (13)

fCE (yCE |YCE) =
∫

δμ ,γμ ,λC E

∫
μi >0

f (yCE |ΛC (t) , λCE) gμ (μi |δμ , γμ) dμi × p (δμ , γμ , λCE |YCE) dδμdγμdλCE (14)
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Fig. 4. Degradation inferences of positioning accuracy.

Fig. 5. Errors of degradation inferences by the Bayesian method and the MLE
method.

corresponding errors are obtained for each cross-validation ob-
servation. The statistics of the samples of degradation inferences
and errors are summarized, and presented in Figs. 4 and 5. For
the boxplots, the central mark is the median of the error, the
edges of the box are the 25th and the 75th percentiles of the
error, and the whiskers extend to the most extreme errors not
considered as outliers. Both the boxplots of the degradation in-
ferences and the inference errors demonstrate that the proposed
method has a high precision.

To further demonstrate the capability of the Bayesian method
for the degradation analysis with sparse degradation observa-
tions, a comparison of the proposed Bayesian method and the
non-Bayesian method is studied. The errors of degradation infer-
ences for the validation observations are given in Fig. 5, which
are separately generated by the proposed Bayesian method and
the MLE method. A higher precision is obtained by the pro-
posed Bayesian method with informative priors over the MLE.
This is mainly due to the incorporation of prior information
through the Bayesian method introduced above, which is critical
for the degradation analysis of sparse degradation observations.
However, the incorporation of prior information cannot be im-
plemented based on the MLE. The capability of the proposed

Fig. 6. Residual life prediction for individual samples (upper), and failure
density function of individual samples and the population of the ball crews
(lower).

Fig. 7. Degradation observations of amount of oil debris.

method for the degradation analysis with sparse degradation
observations is demonstrated.

Given the threshold of the degradation process as DCE =
450, residual life for each individual sample and the reliability
of the population are obtained and given in Fig. 6.

B. Degradation Analysis of Oil Debris: IG Process Model
With Increasing Degradation Rate and Random Effects

The gradual increase of amount of oil debris is related to
the degradation process of gears. Metallic wear debris sensors
are embedded in the lubricating systems of the five spindle
systems. Continual monitoring of the amount of oil debris is
implemented. Degradation observations are presented in Fig. 7.
The degradation analysis is divided into two separate stages,
i.e., stage I and stage II in Fig. 7, to demonstrate the proposed
Bayesian method for the situation of evolving degradation ob-
servations.

An increasing degradation rate is chosen for the degrada-
tion process of the amount of oil debris. It is mainly based
on the experience of experts in that domain, and the overall
trend of the degradation curve presented in Fig. 7. In addition,
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heterogeneity is presented among the degradation curves. The
IG process model with a monotonic degradation rate and random
effect is consequently used to model the degradation process.
The degradation increment of oil debris ΔyME

ij = YME(tij) −
YME(ti,j−1) is model as IG(ΔΛME

ij , λME(ΔΛME
ij )2) with

ΔΛME
ij = (tij/ηi)βi − (ti,j−1/ηi)βi and ηi ∼ Gamma(δη , γη ).

Compared with the degradation analysis of positioning accu-
racy, the information contained in the degradation observations
of oil debris is sufficient for parameter estimations. To simplify
the Bayesian degradation analysis, we used the noninforma-
tive prior distributions for the degradation analysis in stage I as
follows:{

δη∼ Uniform (0, 100) , γη∼ Uniform (0, 100) ,

β ∼ Uniform (0, 10) , λME∼ Uniform (0, 100) .
(16)

The likelihood function for the degradation observations of
oil debris is given as shown in (17) at the bottom of the page,
where η = (η1 , . . . , η5).

The joint posterior distribution of model parameters in stage I
is obtained as follows:

pI

(
η, δη , γη , β, λME |YI

ME
) ∝ πI (δη , γη , β, λME)

×LI

(
YI

ME , η, |δη , γη , β, λME
)
. (18)

When the degradation observations of stage II are available,
the joint posterior distribution of model parameters in stage I
is used as the prior distribution in the degradation analysis in
stage II. The joint posterior distribution for model parameters in
stage II is obtained as

pII (η, δη , γη , β, λME |YME) ∝ pI

(
δη , γη , β, λME |YI

ME
)

×LII
(
YII

ME , η, |δη , γη , β, λME
)

(19)

where pI (δη , γη , β, λME |YI
ME) is the joint posterior distribu-

tion given in (18). LII(YII
ME , η, |δη , γη , β, λME) is the same as

(17) with ΔyME
ij substituted by the degradation increments in

stage II.
Based on the joint posterior distributions obtained in stage I

and stage II, the degradation inference for individual samples
fM (yi,m+k |YME) and the population fME(yME |YME) are ob-
tained as shown in (20) and (21) on the bottom of the next
page.

Similar to the degradation inferences for positioning accu-
racy, 20 000 samples are simulated from the joint posterior
distributions for stage I and stage II using the OpenBUGS. The
degradation inferences, residual life prediction for individual
samples, and reliability assessment for the population are ob-

Fig. 8. Errors of degradation inferences in stage I and stage II.

Fig. 9. Residual life prediction for individual gears in stage I and stage II.

tained through the simulation-based posterior analysis. Three
degradation observations are reserved as validation observa-
tions. The errors of degradation inference for individual sam-
ples in stage I and stage II are presented in Fig. 8. It is shown
in Fig. 8 that the precision of degradation inference improves
a lot from stage I to stage II, which is due to the incorporation
of posterior distribution in stage I as prior distribution for the
degradation analysis in stage II.

The degradation threshold of the oil debris is DME = 150.
The residual life predictions for individual samples and the reli-
ability assessment for individual samples and the population in
stage I and stage II are presented in Figs. 9 and 10.

The improvement of prediction precision from stage I to
stage II is significant. This is ascribed to the effectiveness

L (YME , η, |δη , γη , β, λME) =
5∏

i = 1

gη (ηi |δη , γη )
mi∏

j = 2

f
(
ΔyME

ij |ΔΛME
ij , λME

)

=
5∏

i = 1

γ
δη
η η

δη −1
i

Γ (δη )
exp (−γηηi)

mi∏
j = 2

√√√√√√λME

(
ΔΛME

ij

)2

2π
(
ΔyME

ij

)3 exp

[
−λME

(
ΔyME

ij − ΔΛME
ij

)2
2ΔyME

ij

]
(17)
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Fig. 10. Failure density function for individual gears and the population in
stage I and stage II.

of the proposed Bayesian method for dealing with evolving
degradation observations, where the posterior distribution in
stage I is used as the prior distribution for the degradation anal-
ysis in stage II. The information in stage I is integrated with
the information in stage II. The precision of the residual life
prediction and reliability assessment is improved through this
information integration. From this comparison of results be-
tween the stage I and stage II, the effectiveness of the proposed
Bayesian method for the degradation analysis with evolving
degradation observations is demonstrated.

C. Degradation Analysis of Machining Accuracy: IG Process
Model With S-Shaped Degradation Rate and Random Effects

To obtain information about deterioration of bearings in the
spindle systems, machining accuracy of five spindle systems
is monitored. The machining accuracy is measured discretely
during spare time of the machine tools. The degradation obser-
vations are presented in Table II and Fig. 11.

The IG process degradation model with S-shaped degradation
rate is chosen for the degradation analysis of machining accu-
racy. It is mainly based on subjective experience of experts and
historical information from similar machine tools. The degra-
dation increment of machining accuracy ΔySE

ij = YSE(tij) −
YSE(ti,j−1) is consequently model as IG(ΔΛSE

ij , λSE(ΔΛSE
ij )2)

with ΔΛSE
ij = ΛS (tij) − ΛS (ti,j−1) and νi ∼ Gamma(δν , γν ).

The degradation mean function ΛS (t) is given in (6).
Uniform distributions for model parameter θ = {α, ω,

δν , γν , λSE} are used as priors for the degradation analysis of

TABLE II
DEGRADATION OBSERVATIONS OF POSITIONING ACCURACY

Sample 1 Time 14 46 88 94 96 120 124 150 192 234
Observations 8 17 23 23 23 25 25 29 43 52

Time 244 258 262 288 308 324 334 364 408
Observations 52 54 55 59 65 72 75 84 98

Sample 2 Time 4 6 26 32 58 70 148 158 208 214
Observations 3 4 18 19 22 23 32 32 43 44

Time 220 250 266 306 344 408 434 456 492
Observations 45 48 52 59 72 96 108 116 135

Sample 3 Time 4 36 50 98 136 184 190 208 230 232
Observations 2 15 16 19 25 29 30 31 35 35

Time 256 276 300 302 306 324 334 398 442
Observations 41 44 46 47 47 53 55 72 81

Sample 4 Time 60 62 96 98 128 136 162 216 288 304
Observations 21 21 25 25 27 28 30 43 58 60

Time 318 356 396 426 440 450 478 480 496
Observations 63 76 93 113 123 126 141 142 155

Sample 5 Time 4 68 114 116 122 138 228 242 254 270
Observations 0.01 15 19 19 20 21 31 32 32 35

Time 334 382 402 406 422 424 426 442 458
Observations 44 54 55 55 56 56 57 59 61

Fig. 11. Degradation observations of machining accuracy.

the machining accuracy as follows:⎧⎪⎨
⎪⎩

α∼Uniform (0, 0.25) , ω∼Uniform (0, 1) ,

δν ∼Uniform (0, 100) , γν ∼Uniform (0, 100) ,

λSE ∼Uniform (0, 100)
(22)

where the intervals of shape parameter α and scale parameter ω
are bounded in the intervals for an S-shaped degradation rate.
The remaining parameters are ascribed noninformative priors in
the form of uniform distributions with large intervals.

fM (yi,m+k |YME) =
∫

β ,ηi ,λM E

f (yi,m+k |ΛM (ti,m+k ) , λME) p (β, ηi, λME |YME) dβdηidλME (20)

fME (yME |YME) =
∫

δη ,γη ,β ,λM E

∫
ηi >0

f (yME |ΛM (t) , λME) gη (ηi |δη , γη ) dηi × p (δη , γη , β, λME |YME) dδηdγηdβdλME

(21)
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Fig. 12. Degradation inferences of machining accuracy (upper) and the inference errors (lower).

The likelihood function for the observations of machining
accuracy is given as shown in (23) at the bottom of the page,
where ν = (ν1 , . . . , ν5).

The joint posterior distribution of model parameters is ob-
tained as follows:

p (ν, α, ω, δν , γν , λSE |YSE) ∝ π (α, ω, δν , γν , λSE)

× L (YSE , ν|α, ω, δν , γν , λSE) . (24)

The posterior samples are generated from (24). Similar to the
posterior analysis of oil debris, the degradation inferences for
individual samples and the corresponding errors are obtained
and presented in Fig. 12. The degradation threshold of the ma-
chining accuracy is DSE = 300. The residual life predictions
for individual samples and the reliability assessment for the
population are obtained and presented in Fig. 13.

D. Discussion on Model Selection and Comparison

Because three IG process models are introduced in this paper,
model selection becomes a critical issue for the implementation
of these models for the degradation analysis. One practical way
is to combine the subjective testimony about the degradation
rate with the qualitative analysis of the degradation curves. Due
to the proposed IG process, degradation models are defined

Fig. 13. Residual life prediction for individual samples (upper), and failure
density function for individual samples and population of the bearings (lower).

for different degradation rates, experts’ testimony can help to
identify the specific type of degradation rate and to choose the
right model. Other than the qualitative method for model selec-
tion, quantitative methods can also be introduced. The minimum
Akaike information criterion (AIC) and the leave-out cross val-
idation are two common ways for model selection and com-

L (YSE , ν, |α, ω, δν , γν , λSE) =
5∏

i = 1

gν (νi |δν , γν )
mi∏

j = 2

f
(
ΔySE

ij |ΔΛSE
ij , λSE

)

=
5∏

i = 1

γδν
ν νδν −1

i

Γ (δν )
exp (−γν νi)

mi∏
j = 2

√√√√√√λSE

(
ΔΛSE

ij

)2

2π
(
ΔySE

ij

)3 exp

[
−λSE

(
ΔySE

ij − ΔΛSE
ij

)2
2ΔySE

ij

]
(23)
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Fig. 14. Comparison of degradation inference errors between the Wiener
process and IG process models.

Fig. 15. Comparison of degradation inference errors between the gamma
process and IG process models.

parison. The AIC value is defined as AIC = 2k − 2l(θ̂), where
k = |θ| is the number of parameters in that model and l(θ̂) is the
likelihood of degradation observations under the estimation of
model parameters θ̂. Based on the value of AIC, the one with the
minimum AIC value is selected. On the other hand, the leave-
out cross validation is to retain some degradation observation as
validation observations. By calculating the errors of degradation
inferences with these validation observations, the one with the
minimum error is the best model. The procedure for this leave-
out cross validation is demonstrated in the degradation analysis
mentioned above to validate relevant degradation models.

In this paper, a comparison between the IG process models
and the models based on the Wiener and gamma processes is
studied using the leave-out cross validation method. The degra-
dation observations of positioning accuracy are analyzed using
the degradation models based on the Wiener and gamma pro-
cesses. To model the S-shaped degradation rate, the degradation
models based on the Wiener and gamma processes are separately
formulated as follows.

1) Wiener process model for the degradation observations of
positioning accuracy {Y W (t), t ≥ 0}:

ΔyW
ij (tij) ∼ Normal

(
ΔΛij , σ

2Δtij
)
,

ΔΛij = ΛSi (tij) − ΛSi (ti,j−1) ,

ΛSi (t) = νi exp

(
α

(
t

νi

)
− ω

(
t

νi

)−1
)

,

νi ∼ Gamma (δ, γ) . (25)

2) Gamma process model for the degradation observations
of positioning accuracy {Y G (t), t ≥ 0}:

ΔyG
ij (tij) ∼ Gamma (ΔΛij, b) ,

ΔΛij = b (ΛSi (tij) − ΛSi (ti,j−1)) ,

ΛSi (t) = νi exp

(
α

(
t

νi

)
− ω

(
t

νi

)−1
)

,

νi ∼ Gamma (δ, γ) . (26)

By implementing the proposed Bayesian framework for the
degradation analysis using the Wiener process and gamma pro-
cess models, the errors of degradation inferences under these
models are obtained. A comparison of degradation inference er-
rors among the Wiener process, gamma process, and IG process
models is presented in Figs. 14 and 15. The IG process model
is demonstrated to be more suitable for the degradation analysis
of the machining accuracy than the Wiener process and gamma
process models.

V. CONCLUSION

This study investigates the IG process models for the
degradation analysis with constant, monotonic, and S-shaped
degradation rates. An improved Bayesian framework for the
degradation analysis with the IG process models is introduced
as well. Degradation analysis of a heavy machining tool’s
spindle system is used to demonstrate the proposed methods
step by step. These IG process models and the Bayesian frame-
work have some promising features as follows. Time-varying
degradation rates are introduced in the IG process models,
where physical meaning of model parameters is highlighted.
Other than monotonic and conditionally independent incre-
ments, these models have parametric degradation rates for
their degradation processes. Failure mechanism and experts’
testimony about the degradation processes can be incorporated
through the degradation rates. The difficulties introduced by the
situation of sparse degradation observations and the situation
of evolving observations can then be solved by utilizing
the parametric degradation rates and the extended Bayesian
framework.

In addition, the IG process models with monotonic and
S-shaped degradation rates have shape parameters and scale
parameters, which are separately related to the shape of the
degradation curve and the time scale of the degradation process.
Prior information can be easily incorporated through these
parameters under the Bayesian framework. Moreover, the
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heterogeneities within product population can be handled
through the incorporation of random effects on the scale param-
eters. In summary, these three IG process models and the pro-
posed Bayesian framework jointly make the degradation anal-
ysis with parametric stochastic process models more flexible.

Other than the study presented above, there are some is-
sues deserving further investigation. As the growth of paramet-
ric degradation process models, a comprehensive study about
the model selection and comparison among these degradation
models is urgent. Furthermore, application of the proposed
IG process degradation models with the constructed Bayesian
framework in accelerated degradation test, residual life predic-
tion, and system health management is a valuable topic.
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