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Dynamic Reliability Assessment for Multi-State
Systems Utilizing System-Level Inspection Data
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Abstract—Traditional time-based reliability assessment
methods evaluate the reliability of a multi-state system (MSS)
from a population or a statistical perspective that the reliability of
a system is computed purely based upon historical time-to-failure
data collected from a large population of identical components
or systems. These methods, however, fail to characterize the
stochastic behaviors of a specific individual system. In this paper,
by utilizing system-level observation history, a dynamic relia-
bility assessment method for MSSs is put forth. The proposed
recursive Bayesian formula is able to dynamically update the
reliability function of a specific MSS over time by incorporating
system-level inspection data. The dynamic reliability function,
state probabilities, and remaining useful life distribution of an
MSS in residual lifetime are derived for two common cases: the
degradation of components follows a homogeneous continuous
time Markov process, and a non-homogeneous continuous time
Markov process. The effectiveness and accuracy of the proposed
method are demonstrated via two numerical examples.
Index Terms—Dynamic reliability assessment, multi-state

system, remaining useful life, system-level inspection data.

ABBREVIATION AND ACRONYMS

MSS multi-state system
UGF universal generating function
RUL remaining useful life
PDF probability density function

NOTATION

performance capacity of an MSS at time
instant
performance capacity of component at
time instant
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number of components in an MSS
observation history up until
state of an MSS at time instant
state of component at time instant
set containing all the combinations of
components' states when a system is at its
state
number of combinations of components'
states at a system state
state of component
state of component in the th combination
of components' states when a system is at
state
number of states of component
a constant transition intensity of component
from its state to state for a homogenous
Markov model
a time-varying transition intensity of
component from its state to state at
time for a non-homogenous Markov model
probability of component staying at its
state at time
probability of an MSS staying at its state
at time
performance capacity of a system at its state

probability density function of remaining
useful life given observations up to

I. INTRODUCTION

E NGINEERING systems and their components may mani-
fest multiple states from working perfectly to completely

failing during their deterioration process [1]. Multi-state system
(MSS) reliability theory, which allows for characterizing the
deterioration of degraded systems by introducing multiple inter-
mediate states between the aforementioned two extreme states,
has been recognized as a more effective tool to appropriately
reveal more details of the complicated stochastic behaviors of
advanced engineering systems [2], [3]. Many newly developed
methods, like the extended decision diagram-based method [4],
stochastic processes [5]–[7], universal generating functions
(UGFs) [8], [9], recursive algorithms [10], Monte Carlo simu-
lation [11], [12], and stochastic Petri nets [13] have been used
to facilitate the reliability and performance evaluation for a va-
riety of MSSs, e.g., manufacturing systems [14], power systems
[15], networked systems [12], grid systems [16], spacecraft
[17], municipal infrastructure [18], and defense strategy [19].
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Some recent advances in multi-state system reliability analysis
and optimization have been reported in [3]. As demonstrated
in these studies, with the assistance of MSS reliability tools,
the reliability and performance of systems are more accurately
assessed and greatly enhanced [2], [3].
However, it is noteworthy that the aforementioned studies are

based on traditional time-based reliability models, which com-
pute the reliability of an MSS from the population or statistical
perspective. Put another way, state transition intensities or prob-
abilities, the distribution of the sojourn time at a certain state,
and many other quantities that characterize stochastic behav-
iors of a system are derived from historical data collected from a
large population of identical systems, and the reliability assess-
ment of a system over time is conducted purely based upon this
statistical information [20]. For a specific individual system, if
additional useful knowledge or information related to the sto-
chastic (deteriorating) behaviors of the system becomes avail-
able, uncertainty associated with the deterioration of this spe-
cific system can be further reduced so as to lead a more precise
reliability assessment for this system. Bearing this general con-
cept in mind, dynamic reliability herein is defined as the relia-
bility function or model of a specific system that can be updated
or modified by collecting additional useful knowledge or infor-
mation related to the stochastic (deteriorating) behaviors of the
system after the system is put into use.
In the past decade, many attempts have been made to assess

the dynamic reliability of systems. For example, if denotes
the failure time of a binary-state system, the survival proba-
bility is the dynamic relia-
bility function of a specific individual system given the knowl-
edge (or observation) that the system survives at least up to
[21]. In addition to the status of survival, knowledge or infor-
mation related to a system's stochastic (deteriorating) behavior,
like loading (or usage) history [22], [23], internal and external
covariance [24], [25], or condition monitoring data [26], [27],
can also be utilized to update the reliability function or model
of a specific individual system. As the reliability of a system is
directly associated with the system's residual useful life, diverse
efforts related to remaining useful life estimation or prediction
belong to the scope of dynamic reliability assessment. Methods
related to remaining useful life prediction can be roughly classi-
fied into two categories, i.e., data-driven, and model-based; and
the state-of-the-art methods are summarized in [28]–[31].
Most reported works on dynamic reliability assessment focus

on the situation where knowledge or conditionmonitoring infor-
mation collected from a system or component only reflects, ei-
ther directly or indirectly, the current condition and future evolu-
tion of the system or component itself [26], [27], [32], [33]. For
example, Ye et al. [34] developed a Wiener Process model with
measurement error to characterize the wear process of a mag-
netic head, a critical unit in hard disk drives. Si et al. [35], [36]
focused on improving the accuracy of the remaining useful life
prediction for a single-component system by introducing non-
linear degradation paths or a path-dependent updating strategy.
In these cases, condition monitoring data are merely collected
from a unit or a component, and can only be used to update
the reliability of the monitored unit or component. However, as
most engineered systems consist of more than one component,

and the condition and evolution of a system are eventually de-
termined by its components, tracking and utilizing both compo-
nent-level and system-level knowledge or condition monitoring
information during the system operation stage is expected to im-
prove the accuracy of dynamic reliability assessment for this
specific individual system. To achieve our long-term goal of in-
tegrating hierarchical knowledge and condition monitoring in-
formation across various levels of a system to better assess the
system dynamic reliability, our focus in this work is to utilize
system-level inspection data of a specific individual MSS to
narrow down the possible states of its multi-state components
and further update the reliability of these components, and then
update the reliability function of the system. This issue is very
commonly encountered in engineering practices, for example,
where components' states are oftentimes unobservable, but the
system state can be accurately observed. However, several com-
binations of components' states may result in the same system
state. In this case, identifying the possible state of each com-
ponent in the system enables engineers to update the dynamic
reliability function of this system, and predict the system's fur-
ther deteriorating behaviors and remaining useful life. In ad-
dition, it also allows for maintaining, as early as possible, the
seriously degraded components that have significant contribu-
tions to system performance capacity, or may cause failure of
the entire system. To the best of our knowledge, this issue has
never been addressed in literature. In this paper, by utilizing
all the system-level observation history, a recursive Bayesian
method is put forth to recursively identify the possible states
of components, and further update the reliability function of the
system. The dynamic reliability function, state probabilities, and
remaining useful life distribution of an MSS are also proposed
for two common cases: the degradation of components follows
a homogeneous continuous timeMarkov process, and a non-ho-
mogeneous continuous time Markov process. Numerical exam-
ples are presented to illustrate the effectiveness of the proposed
method.
The remainder of this paper is organized as follows.

Section II introduces the problem we study in this work. The de-
tails of the proposed recursive Bayesian method along with the
formulation of dynamic reliability function, state probabilities
of both the system and its components, and remaining useful
life distribution in residual lifetime are elaborated in Section III.
Two numerical examples are presented in Section IV to demon-
strate the effectiveness of our proposed method, and they are
followed by conclusions and remarks in Section V.

II. PROBLEM STATEMENTS

The MSSs investigated in this paper consist of multiple
components. Every component has multiple discrete states that
could be distinguished by either performance capacity or level
of degradation. For example, consider a power supply system
consisting of generating and transmitting facilities, and each
generating unit can function at different levels of capacity.
Generating units are complex assemblies of many parts. The
failure of different parts may lead to situations in which the
generating unit continues to operate, but at a reduced capacity
[2]. Another example is that, based on the damage level, the
condition of a bearing within a gearbox may be classified into
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Fig. 1. A water piping system.

TABLE I
FLOW TRANSMISSION RATES OF COMPONENTS.

several states from perfectly working to completely failed;
for example, we can define the states as normal, moderately
damaged, seriously damaged, and completely failed. Similar
treatment can be found in many engineering practices, such as
manufacturing systems [14], power systems [15], networked
systems [12], grid systems [16], spacecraft [17], and municipal
infrastructure [18]. The entire system manifests multiple states
with different combinations of components' states. Most often,
more than one combination of components' states may result
in the same system state. A simple water piping system is
exemplified here to illustrate this argument. Suppose the water
piping system is comprised of three pipes, as shown in Fig. 1.
Units #1 and #2 are connected in parallel, and then serially
connected with Unit #3. As reported in [2], [3], [37], [38], the
deteriorating process of each pipe may be classified into several
discrete states, say good, medium, and failed, based on the
performance capacity determined from engineering practice.
Each discrete state corresponds to an interval of the flow rate of
the pipe, and the middle or the average flow rate in that interval
is used to represent the performance capacity of the pipe at each
discrete state. The flow transmission rates of each component
in each state are tabulated in Table I.
The performance capacity of the entire system at any

time instant is completely determined by the performance ca-
pacity of components ( ,2,3). Based on the system
configuration, and the components' performance capacity, one
has as the performance
capacity of the entire system equals the minimal value between

(the sum of the mass flow rates of Units #1
and #2) and (the mass flow rate of Unit #3). The system
states distinguished by the flow transmission rates along with
the associated combinations of components' states are given
in Table II, and this table corresponds to the structure func-
tion . As observed in Table II,
some system states, e.g., states 5, 4, 3, 2, and 1, are caused by
multiple combinations of components' states.
In some engineering practices, it might be impossible to ob-

serve the condition of components; for example, it is difficult
to set up sensors or devices to detect the status of bearings and
gears of a gearbox as they are inside the gearbox. But it is very

TABLE II
THE SYSTEM STATES AND THE ASSOCIATED COMBINATIONS

OF COMPONENTS' STATES.

easy to track and observe the condition of the entire gearbox
via critical signals correlated with the system condition, like vi-
bration signals and oil debris. Instead of directly monitoring the
condition of the states of components, the condition monitoring
information from the system level becomes important to reflect
states of components. Once components' states are identified,
the reliability function of the entire system can be updated so
as to predict the system's future behavior in a more accurate
manner. For example, if the system is detected to be at state 4,
Unit #1, and Unit #2 must be at state 1, and state 3 respectively.
Unit #3, however, could be either at its state 2 or at its state 3,
leading to different deterioration patterns of both Unit #3 and the
system in residual lifetime. Identifying the current state of Unit
#3, therefore, becomes critical to update the reliability function
of the system, and this paper fulfills this need.
Before introducing the proposed method to assess the dy-

namic reliability of a monitored MSS, some assumptions used
in this work are summarized as follows.
1. An MSS consists of components, and has a finite

number of states , ranging
from a perfectly working condition to a completely failed
one. denotes the total number of states of the MSS;

, and represent the best, and the worst states of
the MSS respectively.

2. The component in the MSS could have more than two
states denoted as , where is
the number of possible states of component ; , and
are the best, and the worst states of component respec-
tively. Components in a system monotonically degrade
from a better state to a worse one.

3. The transition intensities or the deterioration model of
component from its state to state ( ) are
known in advance. This assumption is practical as data
collected from component-level reliability tests for each
component can be used to choose a deterioration model,
and estimate the unknown parameters in the deteriora-
tion model. In this paper, existing parameter estimation
methods for multi-state components with a Markov dete-
rioration profile, as reported in [20], [39], can be used to
estimate the transition intensities of components.
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4. The structure function of anMSS with respect to com-
ponents' states is exactly known. The state of an MSS at
any time instant can be, therefore, determined by the
combination of components' states at any time instant
as . Tools like the
universal generating function (UGF) [2], [9], and minimal
path vector [40], provide a computationally efficient way
to find out combinations of components' states with respect
to the system state.

5. As multiple combinations of components' states may lead
to the same system state, one must have .

is a set containing all the combinations of components'
states when the system is at its state . It can be further rep-
resented as , and

denotes the total number of combinations of
components' states at system state . repre-
sents the state of component in the th combination of
components' states when the system is at state .

6. The states of components of a specific individual MSS
at any time instant after the MSS is put into use are
unobservable; whereas the system state is observable
during the operation stage by utilizing condition mon-
itoring techniques, and it is assumed in this work that
the system state can be immediately identified at any
inspection time. The observed state directly corresponds
to the actual health condition or performance capacity of
a specific individual MSS, and it is denoted as
at the th inspection time; while consisting of

represents a sequence of
system states observed at inspection time instants. The
inspection interval could be either periodical or non-peri-
odical.

7. Assume that there is no maintenance activity intervening
in the deterioration process of an MSS.

III. PROPOSED DYNAMIC RELIABILITY ASSESSMENT METHOD

A. Estimation of Current Status

At any inspection time , the current system state ,
along with the observation history of a specific indi-
vidual system, are available. The objective here is to identify the
states of components at the current time instant by using these
sequential system-level inspection data. The associated condi-
tional probability is denoted as

(1)

where , . Equation (1) represents
the probability of the inspected system staying at its state
( ) with the th combination of components'
states given the observation history up to .

separates the observation his-
tory into two portions: the inspection data at time instant , and
these before . By utilizing Bayes' rule,

(2)

the conditional probability of (1) can be further expanded as (3)
at the bottom of the page, where acts as the
event of (2); is event , whereas ,
which can be separated into and ,
the observation history up until , is event of (2). It is
obvious that the first term in the numerator of (3) equals one as
event contains . The second term
in the numerator of (3) can be expanded as

(4)

where indicates that, at the ( ) th inspec-
tion time, the system is at state with the th combination of
components' states. The denominator of (3) can be written as

(5)

(3)
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By plugging (4) and (5) into (3) and (1), one has (6) at the
bottom of the page. It is noted that (6) is a recursive Bayesian
formulation in which the probability of the system staying at
its state with the th combination of components' states at in-
spection time is a function of the probability of the system
staying at its state with the th combination of components'
states at inspection time , and the probability of the system
transiting from the state to within the inspection in-
terval . Because we have assumed that, at the begin-
ning of the operation stage, the system and its components are
in a brand new condition, the initial condition of (6) for the re-
cursive process is set to .
With the assumption that a component's degradation

can be characterized by a Markov model, the future state
which a component will degrade to is -dependent only
on the present state, and -independent of the past states.

is, therefore, -in-
dependent with . If the
stochastic behaviors of components are also -independent of
one another, one has

(7)

where is the state of component in the th combination
of components' states when the system is at its state . Such
expansion is based on the structure function of the system which
links each system state with all the possible components' state
combinations. Beside the structure function table (e.g., Table II),
other reported methods of representing the structure function of
multi-state systems, say the multi-valued structure function [2],
can also be used to find the one-to-many relation between the
system's states and the components' states. Obviously, the state
transition probability of the system is transformed into a product
of state transition probabilities of components.
To compute the probability of state transitions of a compo-

nent, many well-established stochastic models such as Markov
models [2], or Petri nets [13], can be used. We only briefly re-
view two models, namely the homogenous Markov model, and
the non-homogenous Markov model, which have been exten-
sively adopted in MSS modeling [2], [41], [42].
1) Components' Degradation Governed by a Homogenous

Markov Model: In this situation, the transition time between
any pair of states of a component is assumed to be exponentially

distributed. The probability
of component can be derived by solving the corre-

sponding set of Kolmogorov differential equations

(8)

where ( ) is the probability of
component sojourning at its state at time instant .
The initial condition is the most important setting here,
and it should be , for

. Therefore, by solving these differential equa-
tions, equates to

.
2) Components' Degradation Governed by a Non-Homoge-

nous Markov Model: As transition intensities vary over the
age of a component in a non-homogenous Markov model,
deriving the probability of a component at a certain state
is more challenging than the aforementioned homogenous
Markov model [41], [42]. How to solve a non-homogenous
Markov model in a computationally efficient manner is out-
side the scope of this paper, and the formulation given in
[41], [42] can be directly used here, with the initial condition

, for ( ). For ex-
ample, if , that is, the component sojourns
in its state during time interval , the value
of equates to

, and can be expressed as

(9)

If , the probability of component staying
at state at time while staying at state at time

is written as

(10)

(6)
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By substituting and (7) into (6), the
probability of components' states at the current inspection time
can be derived by utilizing all of the system-level observation

history up until . It should be noted that the results will vary
from system to system even if they pass through the same states
but with different transition time instants. This transition is the
unique feature of our proposedmethod, which is able to track the
deterioration of every specific individual system rather than a
population of identical systems. This point will be demonstrated
via our numerical examples in Section IV.

B. Prediction of Future Status

With the knowledge of components' possible states and asso-
ciated probabilities at the latest inspection time , the behav-
iors of the components and the specific individual system in the
future residual lifetime can be more precisely predicted. This
prediction is achieved by considering the component making a
transition from the current state to the next. If the system is ob-
served at state at the current inspection time, the probability
of the system being in state ( ) at the
end of a specified time span can be computed by

(11)

is the time elapsed after . The probability
can be computed in

the same manner as (7), but the only difference worth noting is
to replace , and of (7) by , and , respectively.
The probability of component staying at its state (

) for the rest of its lifetime can
be computed by

(12)

where indicates the highest state of
component among all the combinations of components' states
when the system is at state at inspection time .
Hence, the dynamic reliability function of the system in the

future lifetime is expressed as

(13)

and the corresponding mean remaining useful life (RUL) of the
system is formulated as

(14)

whereas the probability density function of the RUL of the
system can be computed by

(15)

where is the threshold state, and the system getting into a
state lower than can be viewed as failure. For example, for
the multi-state weighted -out-of- :G system, the state is
defined as the lowest state whose utility of all components is
greater than or equal to [43]; whereas, for the MSS defined
in [2], the state is the lowest state whose performance ca-
pacity is greater than or equal to the user demand. In the latter
case, the dynamic reliability function can be written as

(16)

where the random quantity denotes the user demand with
possible discrete values, denotes the th ( )
possible variable of the random quantity , is the probability
that takes the value of , and is an indicator function
which takes the value of one if is not less than zero
and zero otherwise. Hence, the corresponding mean remaining
useful life is expressed as

(17)

Even though only the type ofMSSwhose reliability is defined
as its performance capacity rate being greater than its specified
user demand is exemplified here, the proposedmethod has broad
applications to various types of MSSs if the threshold state in
(14) can be clearly defined.

IV. NUMERICAL EXAMPLES

With the aim of validating the effectiveness of the proposed
method, two numerical examples are presented in this section.
The first example is designed to provide a step-by-step proce-
dure to facilitate the use of the new method in engineering prac-
tices. Results from Monte Carlo simulation are provided to val-
idate our method. In the second example, the proposed method
is further applied to a hypothetic mechanical system of which
state transition intensities vary with the components' age.
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TABLE III
TRANSITION INTENSITIES OF COMPONENTS IN THE STUDIED

WATER PIPING SYSTEM.

A. Example 1 – A Water Piping System
The illustrative example of a water piping system introduced

earlier is presented here to demonstrate the use of the proposed
dynamic reliability assessment method. The transition time of
a component from its better state to a lower one is assumed to
follow an exponential distribution; that is, the deterioration of
each component in the system can be characterized by a homoge-
neouscontinuous timeMarkovprocess.The transition intensities
of components are tabulated inTable III.Theseparameters canbe
obtained by analyzing the historical transition data collected via
component-level reliability testsas reported in [20], [39].
As the deterioration processes of these components are as-

sumed to be -independent, the probability of any component
in one of its states can therefore be computed by resolving the
corresponding Kolmogorov differential equations shown in (8).
The initial condition is set to be and
( ), indicating component is at the best
state at . The details of solving the Kolmogorov differ-
ential equations can be found in [2], [3], [6], [38]. By solving
the corresponding Kolmogorov differential equations, one can
get the state probabilities of Unit #1 over time as

The state probabilities of Units #2 and #3 are identical, and are

where forUnit#2,and forUnit#3.Thecorresponding
state probability curves for Units #1, #2, and #3 are plotted in
Fig. 2(a)–(c), respectively. One has

, and thus the system state probabilities can be de-
rived by using the universal generating function (UGF) (See [2]
for the details of UGF). The system state probabilities starting
from time zero are depicted in Fig. 3 by the dotted lines with
marks, representing the traditional time-based state probability
evaluationwithout taking intoaccount inspectiondata.
Per the proposed method in this work, both the state proba-

bilities of components and systems can be updated dynamically
for an individual specific system if the system state could be
observed during the lifetime of the system. Suppose a specific
system (System #1) is observed in its state 4 at months
after being put into use. However, there are two possible com-
binations of components' states, as shown in Table II, i.e.,

Fig. 2. The state probabilities of components. (a) Unit #1. (b) Unit #2. (c) Unit
#3.

Based on (6), the probability is shown in the first equation at
the bottom of the next page, where

, and . One has
as components of the system

are all in their best states at the beginningof time.The conditional
probability can be com-
puted by multiplying the probabilities of components transiting
from one combination to another as (7). Thus, one has the second
equation at the bottom of the next page, where

can be computed by the aforementionedMarkov
model. For example, months

, as one can observe from Fig. 2(a). By plugging
state transition probabilities of all components into (3), one has

,
, indicating that Unit #3 is more

likely in its state 2 than state 3 at this moment. The updated
state probabilities of the system in the residual lifetime right after

monthscanbederivedvia (11).Forexample, the
probability of the system being in state 2 is formulated as
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Thus, one has the last equation at the bottom of the page. As we
assume that the system is non-repairable, components cannot
restore to a better state. Hence, one has

. Given that the system state is observed
to be 4 at months, the updated state probabilities
of the system starting from months are also plotted
in Fig. 3. With this inspection data, starting from
months, the system may only be in states 1, 2, 3, and 4. The
updated state probabilities after are quite different from the
state probabilities extending from time 0. For example,
is quite different from after , in the interval ,
in Fig. 3.
If state 1 of the system is the failure state, i.e.,
, the system reliability equals the probability of the system
staying at states greater than state 1. The updated reliability
curve of the specific system after incorporating the inspection
information at is plotted in Fig. 4 by the dashed line. As
seen in Fig. 4, the updated reliability of the system is greater
than the reliability assessed without utilizing the system-level
observation over the time span of [0.8, 2.2] months; whereas
the updated reliability possesses a relatively faster declining
trend after 2.2 months.
By utilizing the ensuing system-level inspection data, the re-

liability of the specific system can be further updated. Suppose
System #1 is further observed in its state 2 at months.
The state probabilities of components can be recursively up-
dated by using (6) following the same fashion as our previous
demonstration. Hence, one has

It indicates that the Unit #3 of the system has a greater proba-
bility in its state 2 than its state 1. The updated state probabili-
ties, and the updated reliability curve of System #1 after , are
respectively delineated in Fig. 3, and Fig. 4 by the solid lines
with marks.
Though different systems from the same population have

identical state transition intensities, the dynamic reliability of
a specific system may deviate from the population, and that
difference may be apparent if system-level observations are
obtained and utilized. Suppose System #2 has the exactly same
state transition intensities as System #1 studied earlier. How-
ever, System #2 is observed to be in state 5 at ,
and in state 3 at months. The corresponding dynam-
ically updated state probabilities, and the reliability of System
#2 are illustrated in Fig. 5, and Fig. 6 respectively. In Fig. 5,
the curves starting from time 0 denote the state probabilities
without taking into account inspection data, whereas the curves
starting from , and those starting from represent the up-
dated state probabilities by utilizing system-level inspection
data at , and respectively. By comparing Systems #1 and
#2, one can observe that the updated state probabilities and the
reliability of these two systems are different. System #1 has a
faster degradation trend than System #2 after .

B. Results Validation
TheMonte Carlo simulation is conducted in this subsection to

further verify analytical results of the proposed method for the
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Fig. 3. The original and updated state probabilities of System #1.

Fig. 4. The original and updated reliability of System #1 after inspections.

Fig. 5. The original and updated state probabilities of System #2.

water piping system. The basic flowchart of the Monte Carlo
simulation for computing the state probabilities of a specific in-
dividual MSS is outlined in Fig. 7. sets of state transition
data, i.e., the time instant at which a system transits from one
state to another, are first generated for copies of the studied
MSSs in accordance with transition intensities of components.
Based on the inspection data, the systems that do not match with
observations will be eliminated. For example, if a specific indi-
vidual MSS is observed in its state 5 at months, the

Fig. 6. The original and updated reliability of System #2 after inspections.

Fig. 7. The flowchart of the Monte Carlo simulation.

systems which are not in state 5 at months will be re-
moved from the copies of the generated systems. Assume
that the number of the remaining systems that match with a se-
quence of observations up until is . The proba-
bility that the specific system is with a certain combination of
components' states can be computed as

(19)

where is the number of realizations of the system
whose components' states combination is at . In the re-
maining lifetime, the state probabilities of the specific system
whose observations data is are expressed by

(20)

where is the number of systems which are in state
at . The computation process will continue until there

is no additional inspection data for the specific system.
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Fig. 8. The updated state probabilities from both simulation and the proposed
analytical method.

Fig. 9. The updated reliability from both simulation and the proposed analyt-
ical method.

Both simulation and analytical results for a special System #3
are plotted in Fig. 8, and Fig. 9, where the system is observed
in state 6, and state 3 at months, and months,
respectively. In Fig. 8, the curves starting from time 0 represent
the state probabilities (analytical and simulated results) without
taking into account inspection data, whereas the curves starting
from represent the updated state probabilities (analytical and
simulated results) utilizing inspection data obtained at , and
the curves starting from are results utilizing inspection data
at . is set to 50,000 at initial time . Only some rep-
resentative state probabilities (states 6, 3, and 1) are plotted in
Fig. 8 to avoid the possible confusion due to a huge number of
curves. As one can observe from Figs. 8 and 9, the analytical re-
sults are exactly identical with the simulation results. However,
for the simulation with , it takes around 600 sec-
onds via Matlab R2008 on a PC with an Intel Core(TM) Duo
2 GHz CPU and 4 GB RAM; whereas the proposed analytical
method is able to get accurate results within 2 seconds.

C. Example 2 – A Hypothetical Mechanical System
In this subsection, a numerical example of a hypothetical

multi-state mechanical system consisting of three components

TABLE IV
THE SYSTEM STATES WITH RESPECT TO COMBINATIONS

OF COMPONENTS' STATES.

TABLE V
TRANSITION INTENSITIES OF COMPONENTS IN THE HYPOTHETICAL

MECHANICAL SYSTEM.

is used to further demonstrate the proposed method in the case
where state transition intensities vary over time. The health con-
dition of every component can be roughly categorized into three
states, namely normal (state 3), moderately damaged (state 2),
and seriously damaged (state 1); whereas the health condition
of the entire system is classified into six states from perfectly
working to completely failed, denoted as state 6 to state 1. The
health condition of the system is completely determined by the
states of components. The structure function characterizing the
relationship between the system state and the combi-
nation of components' states ( , 2, 3) is given in
Table IV.
As most mechanical components suffer from aging failures,

e.g., wear, corrosion, cracking, etc. during their lifetime, it is
more appropriate to model the deterioration process of compo-
nents via a non-homogenous Markov model. Put another way,
the state transition intensities of components increase with age.
Hence, the state transition intensities of each component are
assumed to be a function of the component's age as shown in
Table V.
To illustrate that the accuracy of system reliability assess-

ment will be improved by the proposed method via incorpo-
rating system-level inspection data, we randomly generate a set
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TABLE VI
TIME INSTANTS OF STATE TRANSITIONS.

TABLE VII
THE OBSERVATIONS FROM INSPECTIONS OF THE SPECIFIC SYSTEM.

Fig. 10. The PDFs of predicted remaining useful life at inspection points.

of state transition data for a specific individual system by using
the components' transition intensities in Table V with the as-
sumption that all the components are in a completely new con-
dition at month. Based on the state transition times of
components, and the relationship between the system's states
and components' states, we can get the time instants that the
simulated system transits from one combination of components'
states to another, as tabulated in Table VI. The specific system is
inspected four times (except month) during its lifetime,
and the corresponding system states observed at these inspec-
tion points are listed in Table VII.
By utilizing the system-level observations, the reliability of

the specific system can be updated, as well as the distribution of
the remaining useful life (RUL). The probability density func-
tions (PDFs) of the remaining useful life of the specific system
are plotted in Fig. 10, where both the state transition time and
inspection time are also indicated. One can observe that the
bounds of the PDFs of RULs become narrower as the system de-
teriorates from better states to lower ones, indicating a reduction
of the predictive uncertainty for the RUL. All the PDFs of RULs
encompass the actual RUL (denoted by the dash line) of the spe-
cific system. The PDF at an inspection time equal to zero is the
result of traditional time-based reliability assessment methods
where system-level observation is not taken into account, and it
has the widest distribution bound, indicating a great uncertainty
in predicting the possible failure time of the system.
For the sake of illustrating the effectiveness of the proposed

method in terms of predicting the RUL, the results are compared
with that of the following two cases.
1) Case I: It is assumed that the exact state of the system

is unobservable, but one can only know whether the system is

TABLE VIII
THE MSE OF PREDICTED RULS.

working or has failed at each inspection time. In this case, the
traditional survival probability can
be directly used to compute the dynamic reliability of the system
if the system is observed in the working state at inspection time
, where is the traditional time-based multi-state system

reliability function without taking into account inspection data.
2) Case II: Instead of using the recursive Bayesian formu-

lation to estimate the probability of components' states combi-
nations, we assume that the probability of the system staying at
any one of combinations of components' states is the same, i.e.,

.
A loss function is used here to calculate the mean squared

errors (MSEs) of the predicted RUL with respect to the actual
RUL. The loss function is written as [44]

(21)

where is the actual RUL at ; , the same as
(15), is the PDF of the predicted RUL at . A smaller value of

indicates a better prediction of RUL. The MSEs for the
three cases are presented in Table VIII, and the smallest value
at each inspection time is highlighted. At month, the
MSEs of all the three methods are the same because no inspec-
tion data are incorporated at this moment. When taking account
of inspection data, as shown in Table VIII, Case I has the largest
error among three cases, indicating the predictive capability is
the worst. The major reason is that Case I uses the least informa-
tion (either working or failed) associated with the system's de-
terioration process, and it leads to the worst prediction of RUL.
The inspection data of both the proposed method and Case II
contains the information of the state of the system, resulting in a
better predictive capability. The proposed method outperforms
Case II as it allows for incorporating all the system-level in-
spection data up until to achieve a more accurate prediction
of RUL.

V. CLOSURE, AND REMARKS

To utilize the system-level observation history of a specific
system to improve the accuracy of reliability assessment, a dy-
namic reliability assessment method for MSSs is developed in
this paper. A Bayesian formula is put forth to recursively iden-
tify possible states of components at inspection time, further up-
date the reliability function, and predict the remaining useful
life of the system. The dynamic reliability function of MSSs
and state probabilities of components in the residual lifetime are
proposed for two common cases: the degradation of components
follows a homogeneous continuous time Markov process, and a
non-homogeneous continuous timeMarkov process. As demon-
strated in our numerical examples, by utilizing the system-level
observations of a specific system, the reliability function of the
system can be dynamically updated so as to provide a more
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accurate prediction of the remaining useful life of the specific
system than that of traditional time-based reliability assessment
methods.
Even though only three-component multi-state systems are

exemplified in this work, it is worth noting that the proposed
method can be straightforwardly applied to various types
of multi-state systems (e.g., multi-state network, multi-state
weighted -out-of- systems, etc.) with a larger number of
components, or a more complicated system configuration
(beyond series, parallel, mixed series-parallel) by replacing (7)
per the relation between the system's states and components'
states. However, it is required that the relation between the
system's states and components' states should be deterministic
and exactly known as presented in Table II, and Table VI for
the two studied examples respectively.
There are several important issues to be addressed in our

on-going works. First, in this work, we have assumed that the
system state is perfectly observable during system operation.
However, in some engineering practices, the system state may
not be directly inspected, or the observed system state may not
directly correspond to the actual performance capacity of the
system. For example, a generator could be used to produce only
100 MW electric power while its actual performance capacity is
greater than 100 MW. Another example is that condition mon-
itoring systems collecting signals from sensors may be used to
indirectly assess the health condition of a system. Noises and er-
rors from condition monitoringmay, therefore, lead to imperfect
observations of system state or condition, which in turn will im-
pact the accuracy of dynamic reliability assessment. In all these
cases, the actual state of a system is partially observed. These
situations are considered to be future research topics. Second,
only system-level inspection data are considered in the present
work. There is no doubt that integrating condition monitoring
data collected across various physical levels of a system, say
from component-level to system-level, will further improve the
accuracy of dynamic reliability assessment. Third, in some en-
gineering practices, the relation between components and sys-
tems can only be characterized by a probabilistic way rather than
a deterministic model [45]. It is more challenging to conduct
dynamic reliability assessment for such circumstances, and this
problem will be explored in the future. Fourth, the effectiveness
of maintenance activities will be greatly enhanced if the pro-
posed dynamic reliability assessment is taken into account in
maintenance scheduling, and it will be demonstrated in our fu-
ture works.
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