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UNCERTAINTY ANALYSIS METHOD BASED ON A COMBINATION OF THE 
MAXIMUM ENTROPY PRINCIPLE AND THE POINT ESTIMATION METHOD

Metoda analizy niepewności oparta na połączeniu zasady 
maksymalnej entropii i metody oceny punktowej

Uncertainty is inevitable in product design processes. Therefore, to make reliable decisions, uncertainty analysis incor-
porating all kinds of uncertainty is needed. In engineering practice, due to the incomplete knowledge, the distribution 
of some design variables can not be determined. Furthermore, the performance function is highly nonlinear, therefore, 
the high order moments of the performance function are needed to calculate the probability of failure accurately. In this 
paper, an uncertainty analysis method combining the maximum entropy principle and the bootstrapping method is pro-
posed. Firstly, the bootstrapping method is used to calculate the confidence intervals of the first four moments for mixed 
random variables and sample variables. Secondly, the high order moments of limit state functions are estimated using 
the reduced dimension method. Thirdly, to calculate the probability density function (PDF) and cumulative distribution 
function (CDF) of the limit state functions, an optimization model based on the maximum entropy principle is formulated. 
In the proposed method, the assumptions that the distribution of the random variables are known and the calculation of 
the sensitivity for limit state function with respect to the Most Probable Point (MPP) are avoided. Finally, comparisons of 
results from the proposed methods and the MCS method are presented and discussed with numerical examples.

Keywords: uncertainty analysis, bootstrapping , moments, maximum entropy principle.

Niepewność jest nieodłącznym elementem procesów projektowania produktu. Dlatego też podejmowanie niezawodnych 
decyzji wymaga analizy niepewności, która uwzględniałaby wszystkie rodzaje niepewności. W praktyce inżynierskiej, z 
powodu niepełnej wiedzy, wyznaczenie rozkładu niektórych zmiennych projektowych nie jest możliwe. Co więcej, funkcja 
stanu granicznego jest wysoce nieliniowa, co sprawia, że do poprawnego obliczenia prawdopodobieństwa uszkodzenia 
potrzebna jest znajomość momentów wyższych rzędów tej funkcji. W niniejszej pracy zaproponowano metodę analizy nie-
pewności łączącą zasadę maksymalnej entropii z metodą bootstrapową. W pierwszej części pracy wykorzystano metodę 
bootstrapową do obliczenia przedziałów ufności czterech pierwszych momentów dla zmiennych losowych typu miesza-
nego oraz zmiennych z próby. Następnie, wyznaczono momenty wyższych rzędów funkcji stanu granicznego przy użyciu 
metody redukcji wymiarów. Po trzecie, w celu obliczenia funkcji gęstości prawdopodobieństwa (PDF) oraz dystrybuanty 
(CDF) funkcji stanu granicznego, sformułowano model optymalizacji oparty na zasadzie  maksymalnej entropii. Propo-
nowana metoda nie wymaga założenia znajomości rozkładów zmiennych losowych ani obliczania wrażliwości dla funkcji 
stanu granicznego w odniesieniu do najbardziej prawdopodobnego punktu awarii. W końcowej części artykułu porów-
nano na podstawie przykładów numerycznych wyniki otrzymane za pomocą proponowanej metody oraz symulacji Monte 
Carlo (MCS).

Słowa kluczowe: analiza niepewności, bootstrapping, momenty, zasada maksymalnej entropii.

1. Introduction

Uncertainty exists in the whole life-cycle of a product. 
Therefore, to make reliabile decisions, the representation, quan-
tification, and propagation of uncertainty are needed in design 
processes, which have been widely studied in many advanced 
research fields. 

Uncertainty analysis is to evaluate the cumulative distribu-
tion function (CDF), probability density function (PDF) of a 

performance function formulated by mutually independent ran-
dom varaibles. The CDF of the performance function can be 
evaluated with a multidimensional integral. However, in prac-
tice it is very difficult or even impossible to obtain an analyti-
cal solution to the probability integration. Many research have 
been develpoed for approximating the probability integration.

Mainly, there are three approximation approaches for un-
certainty analysis including (1) simulation method, (2) agent 
models method, and (3) analytical method. The most direct re-
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liability analysis method is Monte Carlo simulation (MCS) [5, 
18, 19]. However, the efficiency of MCS is very low for high 
dimension problems or when the requirement of design accu-
racy is high. The main merit of the agent methods [7, 11, 12] is 
easy to solve. However, the accuracy of the agent methods usu-
ally does not meet engineering requirements. Analytical meth-
ods focus on simplifying the multi-dimensional integral calcu-
lation. The first order reliability method (FORM) and second 
order reliability method (SORM) [3, 6, 8, 9, 22] were widely 
used by first order or second order Taylor expansion of the per-
formance function at the most probable failure point (MPP). In 
the MPP based analysis methods, the random variables were 
needed to be transformed into standard normal distribution, 
and the sensitivity analysis was required in both the FORM and 
SORM. Further, the MPP search was an iterative optimization 
process, which might be trapped into local optimum. The ac-
curacy of the two methods was determined by the non-linearity 
of the performance function. When the performance function is 
highly non-linear, the results calculated with the two methods 
may cause huge errors. Another altenative analytical method 
[10, 15, 20] for uncertainty analysis have been developed with 
dimension reduced method combined numerical integration 
methods. Rahman and Xu [20] proposed a univariate dimen-
sion reduction method for multi-dimensional integration using 
moment based quadrature rule. Huang and Du [10] presented 
an uncertainty analysis method based on the combination of di-
mension reduction integration and saddlepoint approximation. 
In their method, all the random variable should be transformed 
into standard normal distribution, and the Gauss-Hermite in-
tegration was used to calculate the moments of the limit state 
functions. Lee and Choi, et al [15] developed an inverse analy-
sis method using MPP based dimension reduction for reliability 
based design optimization. In their method, the MPP calcula-
tion was needed and all the random variables were transformed 
into standard normal distribution.

 Maximum entropy principle as a measure of uncertainty 
has beed developed rencently for uncertainty analysis and reli-
ability based design optimization. As the performance function 
is highly nonliear or the MPP is not unique, the high order mo-
ments of the performace function are needed for estimating the 
CDF of the performance function accurately. Kang and Kwak 
[14] applied the maximum entropy principle to reliability based 
design optimization with the improved moment based quadra-
ture rule. Li and Zhang [16] presented the combined reliability 
analysis approach with dimension reduction method and maxi-
mum entropy principle. The moment based quadrature rule 
was used to calculate the moments of the performance func-
tion. Sung and Kwark [21] proposed reliability bound analysis 
method based on maximum entropy method with respect to the 
first truncated moment.  Ching and Hsieh [4] developed an esti-
mation method to calculate the confidence interval of the prob-
abilty of failure for the performance function with maximum 
entropy principle. Volpe and Bagan [23] analyzed the Maxi-
mum entropy PDFs  and the moment problem of  random vari-
ables under near-Gauss distribution. A constrained optimization 
problem is needed to solve in the maximum entropy principle 
based uncertainty analysis methods. Abramov [1-2] proposed 
BFGS methods to solve this nonliear optimization problem. 

In the above related work, the distribution of the random 
variables were assumed to be known, and were needed to trans-
form into standard normal distribution. In this paper, an uncer-
tainty analysis method combined maximum entropy principle 
and bootstrapping method is proposed. When the distribution 
of some random variables can not be exactly determined, the 
high order moments of limit state functions are estimated by 
bootstrapping method. Confidence intervals of the probability 
density function (PDF), and cumulative distribution function 
(CDF) of performance functions are calculated based on maxi-
mum entropy principle. 

The structure of this paper is as follows. In the second sec-
tion of this paper, the bootstrapping method to estimate dis-
tribution information of uncertainty variables is introduced. 
The process to calculate moments of limit state functions are 
provided in the third section. An optimization model based on 
maximum entropy principle is formulated in the forth section. 
Numerical examples are analyzed using the proposed method 
in the fifth section. Finally the conclusions and disscussion are 
given in the sixth section.

2. Bootstrapping method to estimate the distribu-
tion of the uncertainty variables

A general uncertainty analysis problem as in Eq. (1) is con-
sidered in this work. Performance function y g= ( )x  which is 
also referred to limit-state function is modeled as the output of 
mutually independent random variables x = [ , , , ]x x xn1 2  . 

	 F y P y y f da
g ya( ) ( )

( )
= ≤{ } = ≤∫ ∫x x x 	 (1)

where F y( )  is the CDF of the limit state function, ya  denotes 
a upper bound of the performance function, f ( )x  is the joint 
probability density funtion of x .

Bootstrapping method is a statistical method for estimat-
ing the sampling distribution of a random by sampling with 
replacement from the original samples. The steps of bootstrap-
ping method are analyzed as follows.

Given the m  sample points x x xi i i m, , , ,, , ,1 2   for a random 
variable xi : Step (1) Construct an empirical probability distri-
bution function fxi  from the samples by placing a probability 
of 1 m  for each point x x xi i i m, , , ,, , ,1 2   of the samples. Step (2) 
from the empirical distribution function fxi , draw a random 
sample of size m  with replacement. Step (3) calculate the sta-
tistic of the resample points Txi k, . Step (4) repeat step 2 and step 
3 k  times, where k equals to 1000. Step (5) construct the rela-
tive frequency histogram from the k  number of Txi

 by plac-
ing a probability of 1 k  at each point. T T Tx x xi i i, , ,

, , ,
1 2 1000

   . 
T T Tx x xi i i,( ) ,( ) ,( )

, , ,
1 2 1000

  denote the bootstrap values by rank-
ing T T Tx x xi i i, , ,

, , ,
1 2 1000

  from bottom to top. Then the bootstrap 
percentile confidence interval at 95% level of confidence would 
be [ , ]

,( ) ,( )
T Tx xi i25 975

  . xi  lies within the centered bootstrap 95% 
percentile confidence interval [ , ]

,( ) ,( )
2 2

975 25
x T x Ti x i xi i
− − .
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2.1.	 Calculation of moments for sample variables

Given n samples of a random variable xi  , the first four 
moments µ σ µ µ, , ,  3 4  of a random variable can be calculated 
by Eq. (2):
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The centered bootstrap 95% percentile confi-
dence interval of a random varaible xi  is calculated by 

 [ , ]
,( ) ,( )

2 2
975 25

x T x Ti x i xi i
− − .

3. Moments estimation for the limit state func-
tions

In engineering practices, the limit state function g( )x  is a 
nonliear function of large input variables x = [ , , , ]x x xn1 2    . 
The mean of the limit state funtion can be calculated by point 
estimation method using mn points. The computational burden 
is extremely large if n  becomes large. In order to reduce the 
computational burden, a dimension reduced method [24] is in-
troduced to approximate the limit state function which is ex-
pressed in Eq. (3):

	 g g g gi
i

n
'( ) ( )x = − +

=
∑ µ µ

1
 	 (3)

where g g nµ µ µ µ= ( , , , )1 2   is the performance func-
tion value with all input variables taking the mean values. 
g g xi i n= ( , , , , , )µ µ µ1 2    denotes the response value with 

all input variables taking the mean except the ith  input vari-
able. From Eq. (3), the computational burden is reduced largely 
and the number of the function calls is reached m n× . Since xi  
is mutually independent, gi  is also mutually independent. The 
first four moments of the limit state g( )x  can be calculated by 
Eq. (4):
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where µi , σ i , µ3i , µ4i  are the first four moments of gi   
which can be calculated with the point estimation method of 
the single variable.

Considering incomplete knowledge of some random varia-
bles, the confidence interval of µi   [ , ], ,2 2975 25µ µµ µi iT T

i i
− −  

can be calculated by bootstrapping method.

4. Maximum entropy principle  for calculation of 
CDF and PDF

Entropy has been widely studied for uncertainty analysis 
and reliability design optimization since entropy was analyzed 
by Jaynes [13] as a measure of uncertainty . Maximum entropy 
method is developed to estimate the probability distribution of 
a random variable by maximizing the entropy subject to con-
straints supplied by the moments of the random variable.

Generally, Eq. (5) and Eq. (6) are used to calculate the 
entropy for both the discrete and continuous variables respec-
tively:

	 H x p pi
i

n
i( ) ln= −

=
∑

1
 	 (5)

	 H x H p x p x p x
x

( ) ( ( )) ( ) ln ( )= = −∫  	 (6)

where pi is the probability of the discrete variable xi, and P(x) is 
the PDF of the continuous variable xi.

4.1.	 Optimization formulation to calculate PDF and 
CDF

Maximum entropy formulation of a function can be ex-
pressed by Eq. (7):
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where R is the integral domain, µg  is the mean value of g( )x   , 
and µg

r  is the rth  central moment for the limit state function 
g( )x .

Lagrange method can be used to solve problem in Eq. (7) 
and the Lagrange multipliers are denoted as λ λ λ0 1, , , n( ) , 
and the maximum entropy formulation for the PDF can be ex-
pressed in Eq. (8) , which is the optimal solution to Eq. (7):

	 f g gi
i

n
g

r( ( )) exp( ( ( ) ) )x x= + −
=
∑λ λ µ0

1
 	 (8)

4.2.	 Calculation of the probability of failure for limit 
state function

The steps to calculate probability of failure for limit state 
functions based on maximum entropy approach can be sum-
mered as follows.
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(1) The first four moments of random variables are calculated 
by point estimation method combined bootstrapping meth-
od. 

(2) Estimate moments of the limit state functions where only 
one random variable is involved, shown in Eq. (2).

(3) Estimate moments of the limit state function where n  ran-
dom variables are involved, shown in Eq. (4).

(4) Estimate PDF of the limit state functions according to Eq. 
(7) and Eq. (8).

(5) Calculate CDF and probability of failure.
The flowchart of the calculation process is shown in Figure 1.

5. Numerical examples

5.1.	 Disk edge design

The disk edge design problem used in [20] is expressed as 
in Eq. (9):

y M g x fs
N R R R Rb= = =

× − −
( )

. ( ) ( )( )3 385 82 2
60

2 3
0
3

0δ π   (9)

where x = [ , , , , , ]f s N R Rδ 0
T ; f  is the material utilization; s  

is the tensile strength limit; δ  is the density; N  is the rotor 
speed; R  is the outer radius; and R0  is the inner radius.

The distributions information of the variables are given in 
Table 1.

The samples of design variable f and s are displayed as fol-
lows:

f=[0.9598    0.8596    0.8850    0.9389    0.9304    0.9346    
0.9751    0.9649    0.9474    0.9725    0.8936    0.9767    0.9730    
0.9796    0.9728    0.9511    0.9638    0.8676].

s=[215560   215800    224130    215880    218690    219900     
220500    226770    226890    212110    211250    219830  
217280    214640    214710    222540    218570    216010].

According to the method proposed in Section 2, the confi-
dence interval of moments for the limit state function are shown 
in Table 2.

The PDF of the limit state function at the lower bound and 
upper bound can be expressed as Eq. (10)  and Eq. (11) accord-
ing to the maximum entropy approach:

  
f g g glower ( ) exp( . . .= − × × − × ×0 5153 1 26 10 3 79 106 7 2

                     +8.76 10 -2.39 1015 20× × × ×g g3 4)
 (10)

f g g gupper ( ) exp( .= × × − × ×8.8779-4.46 10

             

5 1 0036 109 2

        +1.032 10 -2.1549 1016 20× × × ×g g3 4)
 (11)

The comparisons for the PDF and CDF of the limit state 
function from the proposed method and MCS are displayed in 
Fig. 2 and Fig. 3, respectively.

5.2.	 Fortini’s clutch problem

The second example is the over running clutch assembly 
known as Fortini’s clutch [17]. The contact angle y in is de-

Fig. 1. Flowchart of the proposed method

Table 1. Distributions of random variables

Variable Distribution type Parameter 1 Parameter 2

f Sample - -

s Sample -lb/in2 -

δ Normal 0.28 lb/in3 0.30 lb/in3

N Normal 21,000 rpm 1,000 rpm

R Normal 24 in 0.5 in

R0 Normal 8 in 0.3 in

Table 2. Confidence interval of moments for the limit state function

First mo-
ment

Second mo-
ment

Third moment Fourth moment

[2.1317, 
2.88]×10-5

[5.376, 
7.2734]×

×10-10

[1.3634,1.8446]× 
×10-14

[3.4772,4.7044]× 
×10-19

Fig. 2. PDF of the limit state function for disk edge design

Point estimation method combined 
bootstrapping method to calculate the 
moments of uncertainty variables

Approximate limit state function

Estimate moments using point estimation

Calculate PDF using the maximum entropy 
approach

Calculate CDF

Calculate probability of failure

First 
setp

Second 
step
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termined by the independent random variable, x x x x1 2 3 4, , ,   as 
shown in Eq. (12). The distribution of design variables is dis-
played in table 3.

	 y x x x x x x= + + − +[ ]arccos ( ) ( )2 21 2 3 4 2 3         (12)

The confidence interval of the first four moments for the 
limit state function are given in Table 4. And the PDF of the 
limit state function at the bounds are expressed by Eq. (13) and 
Eq. (14).

The comparisons for the PDF and CDF of the limit state 
function from the proposed method and MCS are displayed in 
Fig. 4 and Fig. 5, respectively.

6. Conclusions

In this paper, an uncertainty analysis method with bootsrap-
ping method combined maximum entropy method is proposed. 
The exact distribution functions of some random variables 
are not determined using a limited mumber of observations. 
Therefore, the bootstrapping method is used to estimate the 
confidence intervals for the stochastic moments of the random 
variables. Further, the confidence interval of PDF and CDF for 
the limit state functions are calculated using maximum entropy 
approach. 

In the proposed method, neither derivative nor the MPP 
search are needed. And the random variables are not needed 
to be transformed into standard normal distribution. The com-
parison of results form the proposed method with MC method 
presents the accuracy of the proposed method.

Fig. 3. CDF of the limit state function for disk edge design

Fig. 4.  PDF of the limit state function for clutch

Fig. 5.  CDF of the limit state function for clutch

Table 3. Distribution information for variables

Variable Distribution type Mean value[mm] Deviation[mm] Parameters

x1 Beta 55.29 0.0793 q=r=5.0

x2  Normal 22.86 0.0043

x3 Normal 22.86 0.0043

x4 Sample

The samples of design variable   are listed as follow.
4 [154.4042,107.4187 115.6844 145.8643  156.3655 156.9087  109.7149  193.6139 

          158.2305  212.9646  205.6109  383.8824  231.2218  130.8089  110.0401].
=x
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