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Abstract
A damage detection method is formulated to estimate damage location and extent from non-kth perturbation terms of
a specific set of eigenvectors and eigenvalues. The perturbed eigenvalue problem is established from the perturbations
of stiffness matrix, eigenvector, and eigenvalue. Then stiffness parameters are estimated from this equation using the
Davidon–Fletcher–Powell quasi-Newton approach. The optimization algorithm is iterative, and its process is monitored
by d-norm and t-norm indicators. A fixed–fixed beam with an odd number of elements is used as a test structure to
investigate the applicability of the method. In a five elements beam, t-norm convergences of the second-order algo-
rithm are more effective for small and large-percentage damages. In medium-percentage damages, convergences of the
first-order algorithm are faster for both indicators. Convergences of the general-order perturbation method are more
effective for small and medium-percentage damages. Meanwhile, convergences of this method are slightly more effective
in large-percentage damages. For seven elements medium-percentage damage and nine elements small-percentage dam-
age, the second-order algorithm converges faster to the t-norm indicator. It is proven that convergence rate increases
with the order of the algorithm.

Keywords
damage detection, fixed–fixed beam, Davidon–Fletcher–Powell quasi-Newton, non-kth coefficient, perturbed eigenvalue
problem

1. Introduction

Perturbation analysis has been applied to various design and research areas, including parameter identifica-
tions, robust control systems, approximation of system response to changes in system parameters, assessment
of design changes on system performance, analysis of structural systems with random parameters, and this
application of damage detection using vibration diagnostics. Different researchers developed perturbation
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approaches to deal with systems with distinctive eigenparameter features. They consisted of distinct eigen-
values, repeated eigenvalues, and closely spaced modes. Wilkenson [1] and Wong et al. [2, 3] derived the
perturbation equation for damage detection of structural systems with distinct eigenvalues. Chen [4] and Hu [5]
developed the perturbation equation to treat perturbed modes with a repeated eigenvalue, and Chen et al. [6]
investigated the parameter changes in a vibration system with closely spaced eigenvalues.

In the theoretical design of structures, Wanxie and Gengdong [7] used the stationary nature of the Rayleigh
quotient for second-order sensitivity analysis of multimodal eigenvalues. The results were applied to formulate
a sequential quadratic programming approach for solving the problems of multimodal optimal design of struc-
tures. In their work, the Taylor’s series expansions of the stiffness and mass matrices are presented. Wicher and
Nalecz [8] presented a method for determining the second-order sensitivity matrix and logarithmic sensitivity
functions in the frequency domain. A definition of the second-order logarithmic sensitivity function was pro-
posed. A second-order perturbation method was developed by Ryland and Meirovitch [9] for the response of
perturbed, undamped, non-gyroscopic dynamic systems where the eigenparameter perturbation arose from the
small changes in system mass and stiffness parameters. Kan and Chopra [10, 11] derived the second-order per-
turbation analysis of a torsionally coupled building. However, the analysis was given based on the perturbation
of a single parameter. A similar analysis was given by Tsicnias and Hutchinson [12].

An innovative part of this work is to derive the generalized perturbation coefficients where they can be
applied to damage detection of common engineering systems. For the previous approach [2], the perturbed
orthonormal equation is generated from the perturbation of eigenvectors and eigenvalues to obtain the kth per-
turbation coefficients. By eliminating these coefficients, efforts are made to utilize only the non-kth coefficients
in the damage detection algorithms. Moreover, perturbation coefficients are constructed from the basic vectors
of all used eigenvectors and their coefficients. Here the technique developed aims to evaluate generalized order
terms explicitly, so that the generalized order perturbation coefficients can be constructed in sequential order.
A quasi-Newton algorithm for large-scale optimization of perturbed eigenparameters is established. The algo-
rithm makes use of inverse Hessian matrix and the gradient of the objective function, which is composed of
weighted perturbation residuals. Meanwhile, the inverse Hessian matrix generated is based on the Davidon–
Fletcher–Powell (DFP) formulation. This method is applicable to damage detection in different industries, such
as aeronautical system, electrical transmission facilities [13], and gas turbine components. In addition, it can
be applied to civilian structures, such as buildings and bridges.

2. Establishment of the perturbed eigenvalue problem

We derive here the perturbation of the eigenvalues and eigenvectors in the system equations from the eigenvalue
problem. Consider here an original structural system with distinct eigenvalues; its eigenvalue problem before
the estimation is

Kφ
k = λkMφ

k
, (1)

where K, M are its system stiffness and mass matrices, respectively, and λk , φ
k

are its kth eigenvalue and
eigenvector, respectively. The eigenvalue problem of the damaged structure is

Kdφ
k
d = λk

dMφ
k
d, (2)

where Kd is its system stiffness matrix, and λk
d, φ

k
d are its kth eigenvalue and eigenvector, respectively. Assuming

K is a first-order function of Gd, higher-order perturbations of K with respect to the stiffness parameter Gd

vanish. Using the first-order perturbation equation, the matrix Kd is related to K by

Kd = K +
m∑

d=1

∂K

∂Gd
δGd. (3)
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The kth eigenvalue and eigenvector of the damaged structure are related to those of the original structure
through the perturbation expansions:

λk
d = λk +

m∑

d=1

λk
(1)dδGd +

m∑

d=1

m∑

e=1

λk
(2)deδGdδGe + · · · +

m∑

d=1

m∑

e=1

. . .

m∑

z=1︸ ︷︷ ︸
p summations

λk
(p)de...zδGdδGe . . . δGz + εk

λ, (4)

φ
k
d = φ

k +
m∑

d=1

n∑

a=1
a�=k

Pk
(1)daφ

a
δGd +

m∑

d=1

m∑

e=1

n∑

b=1
b�=k

Pk
(2)debφ

b
δGdδGe + . . .

+
m∑

d=1

m∑

e=1

. . .

m∑

z=1

n∑

r=1
r �=k

Pk
(p)de...zrφ

r
δGdδGe . . . δGz + · · · + εk

φ , (5)

where λk
(1)d, λk

(2)de, and λk
(p)de...z are the coefficients of the first-, second-, and pth order perturbation coeffi-

cients of the eigenvalue. Pk
(1)da, Pk

(2)deb, and Pk
(p)de...zr are the first-, second-, and pth order perturbation coefficients

of the first-, second-, and pth order of the eigenvector. εk
λ and εk

φ are the residuals of order p+1. In these sum-

mation series, running indexes d, e, . . . , z = 1, 2, . . . , m. Now we substitute these perturbed forms of λk
d, φ

k
d and

Kd into Equation (2):

{
K +

m∑

i=1

∂K

∂Gi
δGi

}⎧
⎪⎨

⎪⎩
φ

k +
m∑

i=1

n∑

a = 1
a �= k

Pk
(1)iaφ

a
δGi +

m∑

i=1

m∑

j=1

n∑

b = 1
b �= k

Pk
(2)ijbφ

b
δGiδGj + . . .

+
m∑

i=1

m∑

j=1

. . .

m∑

t=1

n∑

r = 1
r �= k

Pk
(p)ij...trφ

r
δGiδGj . . . δGt + . . .

⎫
⎪⎬

⎪⎭

=
⎧
⎨

⎩λk +
m∑

i=1

λk
(1)iδGi +

m∑

i=1

m∑

j=1

λk
(2)ijδGiδGj + · · · +

m∑

i=1

m∑

j=1

. . .

m∑

t=1

λk
(p)ij...tδGiδGj . . . δGt + . . .

⎫
⎬

⎭

M

⎧
⎪⎨

⎪⎩
φ

k +
m∑

i=1

n∑

a = 1
a �= k

Pk
(1)iaφ

a
δGi +

m∑

i=1

m∑

j=1

n∑

b = 1
b �= k

Pk
(2)ijbφ

b
δGiδGj + . . .

+
m∑

i=1

m∑

j=1

. . .

m∑

t=1

n∑

r=1
r �=k

Pk
(p)ij...trφ

r
δGiδGj . . . δGt + . . .

⎫
⎪⎬

⎪⎭
. (6)

This is the perturbed eigenvalue problem of the damaged structure. Different order perturbation coefficients
in the equation can be derived by equating the coefficients of like-order terms of δGd. Equating the coefficients
of the δGd (d=1, 2, …, m) terms yields

K
n∑

a=1
a�=k

Pk
(1)daφ

a + ∂K

∂Gd
φ

k = λkM
n∑

a=1
a�=k

Pk
(1)daφ

a + λk
(1)dMφ

k
. (7)

To obtain the eigenvalue coefficients by premultiplying this equation by φ
kT

, one can make use of Equation
(1) and the orthonormal relation to yield

λk
(1)d = φ

kT ∂K

∂Gd
φ

k
. (8)
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On the other hand, the eigenvector coefficients can be obtained by premultiplying Equation (7) by φ
gT

where
g �= k. We get

n∑

a = 1
a �= k

Pk
(1)daφ

gT
Kφ

a + φ
gT ∂K

∂Gd
φ

k = λk
n∑

a = 1
a �= k

Pk
(1)daφ

gT
Mφ

a + λk
(1)dφ

gT
Mφ

k
. (9)

Using Equation (1) and the orthonormal relations, we get Kφ
g = λgMφ

g
, resulting in

Pk
(1)dg = 1

λk − λg

{
φ

gT ∂K

∂Gd
φ

k
}

. (10)

Equating the coefficients of the δGdδGe(d, e = 1, 2, . . . , m) terms in the perturbed eigenvalue problem of the
damaged structure, one can obtain

1

R1
de!

K
n∑

b = 1
b �= k

Pk
(2)debφ

b + 1

R1
de!

K
n∑

b = 1
b �= k

Pk
(2)edbφ

b + 1

1 + τ e
d

⎡

⎢⎣
∂K

∂Gd

n∑

a = 1
a �= k

Pk
(1)eaφ

a

⎤

⎥⎦ + 1

1 + τ d
e

⎡

⎢⎣
∂K

∂Ge

n∑

a = 1
a �= k

Pk
(1)daφ

a

⎤

⎥⎦ +

= 1

R1
de!

λkM
n∑

b = 1
b �= k

Pk
(2)debφ

b + 1

R1
de!

λkM
n∑

b = 1
b �= k

Pk
(2)edbφ

b + 1

1 + τ e
d

⎡

⎢⎣λk
(1)dM

n∑

a = 1
a �= k

Pk
(1)eaφ

a

⎤

⎥⎦

1

1 + τ d
e

⎡

⎢⎣λk
(1)eM

n∑

a = 1
a �= k

Pk
(1)daφ

a

⎤

⎥⎦ + 1

R1
de!

λk
(2)deMφ

k + 1

R1
de!

λk
(2)edMφ

k
, (11)

where τ e
d is the generalized Kronecker delta defined by

τ e
d =

{
1 , if d = e
0, if d �= e

. (12)

The superscript in R1
de denotes the number of repeated indexes, d and e, in the eigenvalue and eigenvector

coefficients, and R1!
de is the number of all possible permutations of these indexes. If d and e are repeated R1

de! =
2!, otherwise R1

de! = 0!. Consider the eigenvalue coefficients by premultiplying Equation (2) by φ
kT

, and
through the use of orthonormal relations, generalized Kronecker deltas, and permutation numbers, they are
reduced to

λk
(2)DE = R1

de!

⎛

⎜⎝
1

1 + τ e
d

n∑

a = 1
a �= k

Pk
(1)eaφ

kT ∂K

∂Gd
φ

a + 1

1 + τ d
e

n∑

a = 1
a �= k

Pk
(1)daφ

kT ∂K

∂Ge
φ

a

⎞

⎟⎠ , (13)

where λk
(2)DE denotes all combination of λk

(2)de, i.e.λk
(2)DE = λk

(2)de + λk
(2)ed. Note that the upper case indexes in

the subscript of the coefficient indicate that the orders of the indexes are not essential. When the second-order
eigenvalue coefficient is symmetric, λk

(2)DE = 2!λk
(2)de. Equation (13) can be rewritten as

λk
(2)de = R1

de!

2!

⎛

⎜⎝
1

1 + τ e
d

n∑

a = 1
a �= k

Pk
(1)eaφ

kT ∂K

∂Gd
φ

a + 1

1 + τ d
e

n∑

a = 1
a �= k

Pk
(1)daφ

kT ∂K

∂Ge
φ

a

⎞

⎟⎠ . (14)
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Consider the eigenvector coefficients by premultiplying Equation (2) by φ
hT

, where h �= k. Through the use of
Equation (1), and the orthonormal relations, they are reduced to

1

R1
de!

λhPk
(2)deh + 1

R1
de!

λhPk
(2)edh + 1

1 + τ e
d

n∑

a = 1
a �= k

Pk
(1)eaφ

hT ∂K

∂Gd
φ

a + 1

1 + τ d
e

n∑

a = 1
a �= k

Pk
(1)daφ

hT ∂K

∂Ge
φ

a

= 1

R1
de!

λkPk
(2)deh + 1

R1
de!

λkPk
(2)edh + 1

1 + τ e
d

λk
(1)dPk

(1)eh + 1

1 + τ d
e

λk
(1)ePk

(1)dh. (15)

Simplifying this equation, one can obtain

Pk
(2)DEh = R1

de!

λk − λh

(
1

1 + τ e
d

n∑

a=1
a�=k

Pk
(1)eaφ

hT ∂K

∂Gd
φ

a + 1

1 + τ d
e

n∑

a=1
a�=k

Pk
(1)daφ

hT ∂K

∂Ge
φ

a

− 1

1 + τ e
d

λk
(1)dPk

(1)eh − 1

1 + τ d
e

λk
(1)ePk

(1)dh

)
, (16)

where Pk
(2)DE denotes all combinations of Pk

(2)de, i.e. Pk
(2)DE = Pk

(2)de+Pk
(2)ed . When the eigenvector coefficient

is symmetric, one has Pk
(2)de = Pk

(2)ed . Therefore, Equation (16) can be rewritten as

Pk
(2)deh = R1

de!

2!
(
λk − λh

)
(

1

1 + τ e
d

n∑

a=1
a�=k

Pk
(1)eaφ

hT ∂K

∂Gd
φ

a + 1

1 + τ d
e

n∑

a=1
a�=k

Pk
(1)daφ

hT ∂K

∂Ge
φ

a

− 1

1 + τ e
d

λk
(1)dPk

(1)eh − 1

1 + τ d
e

λk
(1)ePk

(1)dh

)
. (17)

Now we can proceed to find the pth order eigenvalue and eigenvector coefficients. Considering the cases with
m ≥ p, equating the coefficients of the δGdδGe . . . δGz (d,e, …, z = 1, 2, …, m) terms in perturbed eigenvalue
problem results in

K
n∑

r=1
r �=k

Pk
(p)DE...Zr

R1
de...z!R

2
de...z! . . . Rα

de...z!
φ

r + 1

1 + τEF...Z
d

∂K

∂Gd

n∑

q=1
q�=k

Pk
(p−1)EF...Zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

q

+ 1

1 + τDF...Z
e

∂K

∂Ge

n∑

q=1
q�=k

Pk
(p−1)DF...Zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

q + · · · + 1

1 + τDE...Y
z

∂K

∂Gz

n∑

q=1
q�=k

Pk
(p−1)D...XYq

R1
d...xy!R2

d...xy! . . . Rϕ

de...xy!
φ

q

= λkM
n∑

r=1
r �=k

Pk
(p)DE...Zr

R1
de...z!R

2
de...z! . . . Rα

de...z!
φ

r + λk
(1)d

1 + τEF...Z
d

M
n∑

q=1
q�=k

Pk
(p−1)EF...Zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

q

+ λk
(1)e

1 + τDF...Z
e

M
n∑

q=1
q�=k

Pk
(p−1)DF...Zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

q + · · · + λk
(1)z

1 + τD...XY
z

M
n∑

q=1
q�=k

Pk
(p−1)D...XYq

R1
d...xy!R2

d...xy! . . . Rϕ

d...xy!
φ

q

+ λk
(2)DE

R1
de!

(
1 + τF...YZ

DE

)M
n∑

p=1
p�=k

Pk
(p−2)F...YZp

R1
f ...yz!R

2
f ...yz! . . . Rγ

f ...yz!
φ

p + λk
(2)DF

R1
df !

(
1 + τE...YZ

DF

)

M
n∑

p=1
p�=k

Pk
(p−2)E...YZp

R1
e...yz!R

2
e...yz! . . . Rη

e...yz!
φ

p + . . .
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λk
(2)DZ

R1
dz!

(
1 + τE...XY

DZ

)M
n∑

p=1
p�=k

Pk
(p−2)E...XYp

R1
e...xy!R2

e...xy! . . . Rκ
e...xy!

φ
p + λk

(2)EF

R1
ef !

(
1 + τD...YZ

EF

)

M
n∑

p=1
p�=k

Pk
(p−2)D...YZp

R1
d...yz!R

2
d...yz! . . . Rμ

d...yz!
φ

p + . . .

λk
(2)EZ

R1
ez!

(
1 + τD...XY

EZ

)M
n∑

p=1
p�=k

Pk
(p−2)D...XYp

R1
d...xy!R2

d...xy! . . . Rν
d...xy!

φ
p + · · · + λk

(2)YZ

R1
yz!

(
1 + τDE...X

YZ

)

M
n∑

p=1
p�=k

Pk
(p−2)DE...Xp

R1
de...x!R

2
de...x! . . . R�

de...x!
φ

p

+ · · · + λk
(p−1)EF...Z

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
(
1 + τ d

EF...Z

)M
n∑

a=1
a�=k

Pk
(1)daφ

a

+ λk
(p−1)DF...Z

R1
df ...z!R

2
df ...z! . . . Rx

df ...z!
(
1 + τ

χ
DF...Z

)M
n∑

a=1
a�=k

Pk
(1)eaφ

a

+ · · · + λk
(p−1)DE...Y

R1
de...y!R

2
de...y! . . . Rϕ

de...y!
(
1 + τ z

DE...Y

)M
n∑

a=1
a�=k

Pk
(1)zaφ

a + λk
(p)DE...Z

R1
de...z!R

2
de...z! . . . Rα

de...z!
Mφ

k
, (18)

where the generalized Kronecker deltas, such as τEF...Z
d and τF...YZ

DE , are defined by

τEF...Z
d =

{
1 , if d = e, f , . . . , or z

0, if d �= e, f , . . . , and z
(19)

and

τF...YZ
DE =

{
1 , if d and e appear in the indices in the superscript
0, if d and e do not appear in the indices in the superscript

, (20)

respectively. Eigenvector and eigenvalue coefficients, such as Pk
(p)DE...Zq and λk

(p−1)EF...Z , represent the sums of

all terms of the forms Pk
(p)de...z and λk

(p−1)ef ...z, respectively, with different permutations of indexes d, e, . . . z and

e, f , . . . , z. The coefficients, such as R1
de...z,R

2
de...z,…,Rα

de...z, are the numbers of the first, second and last repeated
indexes within indexes d, e, . . . , z, respectively. Note that the upper case indexes in the sub- and superscripts
of all the generalized Kronecker deltas in Equations (19) and (20) indicate that the orders of the indexes are

not essential. Premultiplying Equation (18) by φ
kT

and using Equation (1) and the orthonormal relations in the
resulting equation, one can obtain

λk
(p)DE...Z = R1

de...n!R2
de...n! . . . Rα

de...n!

⎛

⎜⎝
1

1 + τEF...Z
d

n∑

q = 1
q �= k

Pk
(p−1)EF...Zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

kT ∂K

∂Gd
φ

q + 1

1 + τDF...Z
e

+
n∑

q = 1
q �= k

Pk
(p−1)DF...Zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

kT ∂K

∂Ge
φ

q + · · · + 1

1 + τDE...Y
z

n∑

q = 1
q �= k

Pk
(p−1)DE...Yq

R1
de...y!R2

de...y! . . . Rϕ

de...y!
φ

kT ∂K

∂Gz
φ

q

⎞

⎟⎠ ,

(21)
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where λk
(p)DE...Z denotes the summation of all combination of λk

(p)de...z, i.e. λk
(p)DE...Z = λk

(p)de...z + λk
(p)ed...z + · · · +

λk
(p)d...yz. When the eigenparameter coefficients are symmetric, their total numbers are the factorial numbers of

their orders, i.e. λk
(p)DE...Z = p!λk

(p)de...z. So the pth-order eigenvalue coefficient is reduced to

λk
(p)de...z = R1

de...n!R2
de...n! . . . Rα

de...n!

p!

⎛

⎜⎝
1

1 + τEF...Z
d

n∑

q = 1
q �= k

(p − 1) !Pk
(p−1)ef ...zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

kT ∂K

∂Gd
φ

q + 1

1 + τDF...Z
e

n∑

q = 1
q �= k

(p − 1) !Pk
(p−1)df ...zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

kT ∂K

∂Ge
φ

q + · · · + 1

1 + τDE...Y
z

n∑

q = 1
q �= k

(p − 1) !Pk
(p−1)de...yq

R1
de...y!R2

de...y! . . . Rϕ

de...y!
φ

kT ∂K

∂Gz
φ

q

⎞

⎟⎠ . (22)

Premultiplying Equation (18) by φ
wT

, where w �= k, and using Equation (1) and the orthonormal relations,
yields the generalized order eigenvector coefficient

Pk
(p)DE...Zw = R1

de...z!R
2
de...z! . . . Rx

de...z!

λk − λw

[
1

1 + τEF...Z
d

n∑

q = 1
q �= k

Pk
(p−1)EF...Zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

wT ∂K

∂Gd
φ

q

+ 1

1 + τDF...Z
e

n∑

q=1
q�=k

Pk
(p−1)DF...Zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

wT ∂K

∂Ge
φ

q + · · · + 1

1 + τDE...Y
z

n∑

q=1
q�=k

Pk
(p−1)DE...Yq

R1
de...y!R2

de...y! . . . Rϕ

de...y!
φ

wT ∂K

∂Gz
φ

q

− λk
(1)d

1 + τEF...Z
d

Pk
(p−1)EF...Zw

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
− λk

(1)e

1 + τDF...Z
e

Pk
(p−1)DF...Zw

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
− · · · −

λk
(1)z

1 + τD...XY
z

Pk
(p−1)D...XYw

R1
d...xy!R2

d...xy! . . . Rϕ

d...xy!
− λk

(2)DE

R1
de!

(
1 + τF...YZ

DE

)
Pk

(p−2)F...YZw

R1
f ...yz!R

2
f ...yz! . . . Rγ

f ...yz!

− λk
(2)DF

R1
df !

(
1 + τE...MN

DF

)
Pk

(p−2)E...MNw

R1
e...mn!R2

e...mn! . . . Rη
e...mn!

− · · · − λk
(2)DN

R1
dn!

(
1 + τE...LM

DN

)
Pk

(p−2)E...LMw

R1
e...lm!R2

e...lm! . . . Rκ
e...lm!

− λk
(2)EF

R1
ef !

(
1 + τD...MN

EF

)
Pk

(p−2)D...MNw

R1
d...mn!R2

d...mn! . . . Rμ

d...mn!
− · · · − λk

(2)EN

R1
en!

(
1 + τD...LM

EN

)
Pk

(p−2)D...LMw

R1
d...lm!R2

d...lm! . . . Rν
d...lm!

− · · · − λk
(2)MN

R1
mn!

(
1 + τDE...L

MN

)
Pk

(p−2)DE...Lw

R1
de...l!R

2
de...l! . . . R�

de...l!
− · · · −

λk
(p−1)EF...N

R1
ef ...n!R2

ef ...n! . . . Rβ

ef ...n!
(
1 + τ d

EF...N

)Pk
(1)dw − λk

(p−1)DF...N

R1
df ...n!R2

df ...n! . . . Rχ

df ...n!
(
1 + τ e

DF...N

)Pk
(1)ew − · · · −

λk
(p−1)DE...M

R1
de...m!R2

de...m! . . . Rϕ

de...m!
(
1 + τ z

DE...M

)Pk
(1)nw

]
. (23)
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Now considering that the coefficients are symmetric, their total numbers are the factorial numbers of their
orders. Therefore, the pth-order symmetric eigenvector coefficient can be rewritten as

Pk
(p)de...zw = R1

de...z!R
2
de...z! . . . Rx

de...z!

p!
(
λk − λw

)
[

1

1 + τEF...Z
d

n∑

q=1
q�=k

(p − 1) !Pk
(p−1)ef ...zq

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
φ

wT ∂K

∂Gd
φ

q

+ 1

1 + τDF...Z
e

n∑

q=1
q�=k

(p − 1) !Pk
(p−1)df ...zq

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
φ

wT ∂K

∂Ge
φ

q + · · · + 1

1 + τDE...Y
z

n∑

q=1
q�=k

(p − 1) !Pk
(p−1)de...yq

R1
de...y!R2

de...y! . . . Rϕ

de...y!
φ

wT ∂K

∂Gz
φ

q

− λk
(1)d

1 + τEF...Z
d

(p − 1) !Pk
(p−1)ef ...zw

R1
ef ...z!R

2
ef ...z! . . . Rβ

ef ...z!
− λk

(1)e

1 + τDF...Z
e

(p − 1) !Pk
(p−1)df ...zw

R1
df ...z!R

2
df ...z! . . . Rχ

df ...z!
− · · · −

λk
(1)z

1 + τD...XY
n

(p − 1) !Pk
(p−1)d...xyw

R1
d...xy!R2

d...xy! . . . Rϕ

d...xy!
− 2!λk

(2)de

R1
de!

(
1 + τF...YZ

DE

)
(p − 2) !Pk

(p−2)f ...yzw

R1
f ...yz!R

2
f ...yz! . . . Rγ

f ...yz!

− 2!λk
(2)df

R1
df !

(
1 + τE...MN

DF

)
(p − 2) !Pk

(p−2)e...mnw

R1
e...mn!R2

e...mn! . . . Rη
e...mn!

− · · · − 2!λk
(2)DN

R1
dn!

(
1 + τE...LM

DN

)
(p − 2) !Pk

(p−2)E...LMw

R1
e...lm!R2

e...lm! . . . Rκ
e...lm!

− 2!λk
(2)EF

R1
ef !

(
1 + τD...MN

EF

)
(p − 2) !Pk

(p−2)d...mnw

Rφ1
d...mn!Rφ2

d...mn! . . . Rμ

d...mn!
− · · · − 2!λk

(2)EN

R1
en!

(
1 + τD...LM

EN

)
(p − 2) !Pk

(p−2)D...LMw

R1
d...lm!R2

d...lm! . . . Rν
d...lm!

− · · · − 2!λk
(2)MN

R1
mn!

(
1 + τDE...L

MN

)
(p − 2) !Pk

(p−2)DE...Lw

R1
de...l!R

2
de...l! . . . R�

de...l!
− · · · −

(p − 1) !λk
(p−1)EF...N

R1
ef ...n!R2

ef ...n! . . . Rβ

ef ...n!
(
1 + τ d

EF...N

)Pk
(1)dw −

(p − 1) !λk
(p−1)DF...N

R1
df ...n!R2

df ...n! . . . Rχ

df ...n!
(
1 + τ e

DF...N

)Pk
(1)ew − · · · −

(p − 1) !λk
(p−1)DE...M

R1
de...m!R2

de...m! . . . Rϕ

de...m!
(
1 + τ z

DE...M

)Pk
(1)nw

]
. (24)

All these eigenvalue and eigenvector coefficients can be computed using a perturbation algorithm described
as follows. With the known changes of the eigenvalues, λk

d − λk , in Equation (4) and those of the eigenvectors,

φ
k
d−φ

k
, in Equation (5), the perturbation equations at each estimation are generated. The changes of all stiffness

parameters are then calculated from these equations using a quasi-Newton optimization method.
In order to validate the accuracy of these results, we compare these perturbation coefficients with those from

the general-order perturbation. One can obtain the second-order eigenvalue coefficient from the general-order
perturbation (GOP) method as

λk
(2)de = 1

2!
φ

kT
(

∂K

∂Gd
zk

(1)e + ∂K

∂Ge
zk

(1)d

)
= 1

2

⎛

⎜⎝
n∑

a=1
a�=k

Pk
(1)eaφ

kT ∂K

∂Gd
φ

a +
n∑

a=1
a�=k

Pk
(1)daφ

kT ∂K

∂Ge
φ

a

⎞

⎟⎠ , (25)

where zk
(1)d =

n∑
a=1
a�=k

Pk
(1)daφ

a
is the eigenvector perturbation vector. The second-order eigenvalue coefficient from

this method is given by Equation (14). When the indexes are non-repeated, i.e. d �= e, we have R1
de! = 0! and

τ e
d = 0, giving
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λk
(2)de = 1

2

⎛

⎜⎝
n∑

a=1
a�=k

Pk
(1)eaφ

kT ∂K

∂Gd
φ

a +
n∑

a=1
a�=k

Pk
(1)daφ

kT ∂K

∂Ge
φ

a

⎞

⎟⎠ . (26)

Comparing this with Equation (25), we have validated that both equations give the same results in eigenvalue
perturbation coefficients. Equation (25) seems to be more compact. However, it includes the eigenvector per-
turbation vectors that are more tedious to compute or program than Equation (26), which are reduced in this
method.

Moreover, one can proceed to compare the second-order eigenvector perturbation coefficient. Using the
second-order eigenvector perturbation coefficient from the GOP method2 as

Pk
(2)deh = 1

2!(λk − λh)
φ

hT
{(

∂K

∂Gd
zk

(1)e + ∂K

∂Ge
zk

(1)d

)
−

(
λk

(1)dMzk
(1)e + λk

(1)eMzk
(1)d

)}
, (27)

where zk
(1)d =

n∑
a=1
a�=k

Pk
(1)daφ

a
is the eigenvector perturbation vector. Therefore, one can obtain

Pk
(2)deh = 1

2!(λk − λh)

⎧
⎪⎨

⎪⎩
φ

hT ∂K

∂Gd

n∑

a=1
a�=k

Pk
(1)eaφ

a + φ
hT ∂K

∂Ge

n∑

a=1
a�=k

Pk
(1)daφ

a

−
n∑

a=1
a�=k

(
λk

(1)dφ
hT

MPk
(1)eaφ

a + λk
(1)eφ

hT
MPk

(1)daφ
a
)
⎫
⎪⎬

⎪⎭
. (28)

Using the mass normalization equation, we obtain

Pk
deh = 1

2(λk − λh)

⎧
⎪⎨

⎪⎩
φ

hT ∂K

∂Gd

n∑

a=1
a�=k

Pk
(1)eaφ

a + φ
hT ∂K

∂Ge

n∑

a=1
a�=k

Pk
(1)daφ

a −
(
λk

(1)dPk
(1)ea + λk

(1)eP
k
(1)da

)
⎫
⎪⎬

⎪⎭
. (29)

Likewise, the second-order eigenvector coefficient from this method is given by Equation (17). When the
indexes are non-repeated, i.e. d �= e, we have R1

de! = 0! and τ e
d = 0, giving

Pk
(2)deh = 1

2
(
λk − λh

)

⎛

⎜⎝
n∑

a=1
a�=k

Pk
(1)eaφ

hT ∂K

∂Gd
φ

a +
n∑

a=1
a�=k

Pk
(1)daφ

hT ∂K

∂Ge
φ

a − λk
(1)dPk

(1)eh − λk
(1)ePk

(1)dh

⎞

⎟⎠ . (30)

Thus, we found that both equations give exactly the same results. In addition, it is not difficult to illustrate
that both equations are also exactly the same for repeated indexes, i.e. d = e. The eigenvector coefficient
in Equation (30) is more lengthy, but its terms are simplified during the normalization procedure, and it is
expressed in lower-order explicit terms, which are more convenient to generate sequentially.

3. Davidon–Fletcher–Powell quasi-Newton approach for optimization of the
perturbation equation

The objective in the perturbation algorithm is to estimate the stiffness parameters of the structure so that
its eigenparameters from the computational model closely resemble those from the damaged case, �D =
(λ1

D, φ
1
D, λ2

D, φ
2
D, . . . , λn

D, φ
n
D)T . The algorithm reads in and transforms the eigenparameter of the original com-

putational structure to its master degrees of freedom. Impaction of the work lies on the use of an elastic modulus
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as the monitoring parameter, for which not just Young’s modulus can be changed but also its physical dimen-
sions, such as width and thickness. This availability is essential in the corrosion detection of lightning poles in
an electrical substation in Baltimore city in Maryland [13], where a cross-sectional area of the lightning pole
reduced in significant proportion after a long period of outdoor service. Our ultimate goal is to estimate the
elastic moduli, Gd = EdI

/
l3
e (where Ed is the Young’s modulus of the dth element, I and le are its moment

of inertia and length respectively), of the structural components that serve as the structural parameters of the
system. With the use of explicit perturbation coefficient equations, these coefficients can be constructed pro-
gressively from the lower-order coefficients. From the developed methodology, the left-hand sides of the system

equations, such as Equations (4) and (5), are φ
k
D and λk

D from the simulated data of the damaged case, and the
first terms on the right-hand sides of these equations are the eigenparameters of the computational model from

previous estimation. In the first estimation, λk and φ
k
in the system equations are the updated eigenparameters of

the undamaged beam. Substituting these coefficients in Equations (4) and (5), the system perturbation equations
are formed. In order to optimize the changes to elastic moduli from these large-scale perturbation equations,
the DFP quasi-Newton method is established. We use the notations εk

λ and εk
φ to denote errors in satisfying

the system equations in Equations (4) and (5), respectively. We choose a set of n eigenparameter pairs in the

detection process. Let the number of master degrees of freedom of φ
k
d be Nm, Nm = N , and Nm < N when

we have complete and reduced-order eigenvector measurements, respectively. Hence we establish the weighted
eigenparameter perturbation residual objective function as

J =
n∑

k=1

W k
λ (εk(p)

λ )2 +
n∑

k=1

W k
φ

(εk(p)
φ )T (εk(p)

φ ), (31)

where W k
λ (k = 1, 2, . . . , n) and W k

φ
(k = 1, 2, . . . , n) are the weighting factors, and J is a function of δG(w)

d

when one substitutes the expressions for ε
k(p)
λ and ε

k(p)
φ of Equations (4) and (5) into Equation (31). This is an

over-determined system, where n + nNm > m, and the DFP quasi-Newton approach is used to determine δG(w)
i

iteratively. Meanwhile, J = 0 (i.e. ε
k(p)
λ = ε

k(p)
φ = 0) when the optimal solutions are reached. To minimize this

objective function at the wth iteration, one can use the updating equation

δG
(w)
(b) = δG

(w)
(b−1) − αbBb−1gb−1 (32)

to update the variations in the stiffness parameters, where δG
(w)
(b) = (δG(w)

1(b), δG(w)
2(b), . . . , δG(w)

m(b))
T , αb ≥ 0 is

the step size, and the gradient vector associated with δG
(w)
(b−1) equals gb−1 = ( ∂J

∂G
(w)
1

, ∂J

∂G
(w)
2

, . . . , ∂J

∂G
(w)
m

)T . Note

that the subscript b (b ≥ 1) in all variables in Equation (32) denotes the number of nested iterations. The
initial values used are δG(w)

d(0) = 0. The nested iteration is terminated when αb

∥∥gb−1

∥∥
∞ < γ , where ‖ · ‖∞

is the infinity norm and γ is some small constant, or the number of nested iterations exceeds an acceptable
number, D.

Due to its successive linear approximations to the objective function, the gradient algorithm may propagate
slowly when approaching a stationary point. The DFP quasi-Newton approach provides a remedy to this prob-
lem by using essentially quadratic approximation to the objective function near the stationary point. Its iteration
scheme is given by Equation (26), where Bb−1 is an approximation to the inverse of the Hessian matrix used at
the bth nested iteration. Initially, we set δG(w)

d(0) = 0 and B0 = I as the identity matrix. The matrix Bb is updated
using the DFP formula:

Bb = Bb−1 + (δG
(w)
(b) − δG

(w)
(b−1))(δG

(w)
(b) − δG

(w)
(b−1))

T

(δG
(w)
(b) − δG

(w)
(b−1))

T (gb − gb−1)
− [Bb−1(gb − gb−1)][Bb−1(gb − gb−1)]T

(gb − gb−1)T Bb−1(gb − gb−1)
. (33)

The nested iteration is terminated when αb

∥∥Bb−1gb−1

∥∥
∞ < γ or the number of iterations exceeds D. The

optimization process, including the step-size search procedure, is described below.
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3.1. Step-size search procedure

The optimal step size is determined in each nested iteration to minimize the function J (δG(w)
(b−1)−αbBb−1gb−1) =

F(αb) with respect to αb. The search procedure is divided into two phases: (1) initial search to bracket the
optimal α∗

b ; and (2) golden section search to locate α∗
b within the bracket.

3.2. Initial bracketing

The initial bracketing procedure begins with choosing the starting point α1 = 0 and an initial increment � > 0.
Then, let α2 = α1 + �, F1 = F(α1), and F2 = F(α2). Since for this method, B0g0 = Ig0 = g0 and it is along a
descent direction of J when � is sufficiently small, one has F2 < F1. Rename 2� as�, and let α3 = α2 + �,
and F3 = F(x3). If F3 > F2, one should stop and α∗

b is contained in the interval(α1, α3). Otherwise, α2 should
be renamed as α1 and α3 asα2, then F2 becomes F1 and F3 becomes F2. Rename 2� as �, let α3 = α2 + �,
and F3 = F(x3). Compare F3 and F2 and repeat the above procedure if F3 < F2 until F3 > F2 with the final
interval (α1, α3) containing α∗

b .

3.3. Golden section search

If |α3 − α2| > |α2 − α1|, define a new point:

α4 = α2 + 0.382(α3 − α2). (34)

Otherwise, α1 should be renamed as α3 and α3 as α1, and then define α4 using Equation (34). Now, let F4 =
F(x4). If F2 < F4, α4 should be renamed as α3, then F4 becomes F3. Otherwise, rename α2 as α1 and α4

asα2, then F2 becomes F1 and F4 becomesF2. Comparing |α3 − α2| and |α2 − α1|, and repeating the above
procedure until |α3 − α1| · ∥∥Bb−1gb−1

∥∥
∞ < εα, where εα is golden section search accuracy. Then we choose

α∗
b = (α1 + α3)

/
2. When the b nested search is completed, elastic moduli in this computational model are then

updated by

G(w+1)
d = G(w)

d + δG(w)
d , (35)

where ∂G(w)
d is the estimated change of the dth elastic modulus. Note that in each subsequent estimation (i.e.

w ≥ 2), Equations (4) and (5) are modified by replacing elastic moduli Gd, Ge, . . ., and with G(w)
d , G(w)

e , . . ., and

G(w)
z , respectively, while all the selected eigenparameters and their coefficients are reanalyzed using the fixed–

fixed beam model. From the calculated changes of the eigenparameters on the left-hand sides of the resulting
perturbation equations, one calculates inversely the change of the elastic modulus ∂G(w)

d , and updates the elastic
modulus using Equation (35). Two process indicators are used during the estimation process.

1) This process indicator is attained when the total norm of the weighted normalized eigenparameter
difference vector drops below dn% of the eigenparameter difference vector (d-norm):

‖d‖(wdn) = nφd

nφ∑

i=1

W
φ

i
d

∥∥∥∥∥∥
φ

i(wdn) − φ
i
d

max
∣∣∣φi

d

∣∣∣

∥∥∥∥∥∥
+

nλ∑

j=1

W
λ

j
d

∥∥∥∥∥
λj(wdn) − λ

j
d

λ
j
d

∥∥∥∥∥

≤ dn

100

⎛

⎝nφd

nφ∑

i=1

W
φ

i
d

∥∥∥∥∥∥
φ

i(0) − φ
i
d

max
∣∣∣φi

d

∣∣∣

∥∥∥∥∥∥
+

nλ∑

j=1

W
λ

j
d

∥∥∥∥∥
λj(0) − λ

j
d

λ
j
d

∥∥∥∥∥

⎞

⎠ , (36)

where n
φ

i
d

is the total degrees of freedom of φ
i
d, W

φ
i
d

is the weighting factor of the ith damaged eigenvector,

W
λ

j
d

is the weighting factor of the jth damaged eigenvalue, and wdn is the smallest estimation number for

which the dn % criterion is reached.
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Figure 1. Computational model of odd elements beam with the fixed-fixed boundary condition.

2) This process indicator is attained when the norm of the eigenparameter difference vector drops below tn%
of the total norm of weighted normalized damaged eigenparameter vector (t-norm):

‖d‖(wtn) = nφd

nφ∑

i=1

W
φ

i
d

∥∥∥∥∥∥
φ

i(wtn) − φ
i
d

max
∣∣∣φi

d

∣∣∣

∥∥∥∥∥∥
+

nλ∑

j=1

W
λ

j
d

∥∥∥∥∥
λj(wtn) − λ

j
d

λ
j
d

∥∥∥∥∥

≤ tn

100

⎛

⎝nφd

nφ∑

i=1

W
φ

i
d

∥∥∥∥∥∥
φ

i
d

max
∣∣∣φi

d

∣∣∣

∥∥∥∥∥∥
+

nλ∑

j=1

W
λ

j
d

⎞

⎠ , (37)

where wtn is the smallest estimation number for which the tn% criterion is reached. One can note that these
process indicators are dimensionless numbers. In order to automate the whole process, the algorithm
is established under the MatLab programming platform. It integrates the beam’s finite element model,
vibration analysis, explicit coefficient generation, perturbation equation establishment, and optimization
solver. Its main steps are listed below:

(1) construct the system matrices of the eigenvalue problem for the fixed–fixed beam;
(2) compute the eigenparameters of the damaged and updated beam;
(3) calculate the explicit eigenvalue and eigenvector perturbation coefficients;
(4) set-up the inverse system perturbation equations;

(5) estimate δG
(w)

from perturbation equations using the quasi-Newton method;
(6) update the stiffness parameter vector;
(7) repeat steps (1)–(6) iteratively until both process indicators are attained;
(8) plot out the estimation curves of the beam’s elastic moduli.

4. Structural damage detection of the fixed–fixed beam

After developing the algorithm, its performance was evaluated through different damaged cases. Random dam-
age is applied to all beam elements, but with the constraint of systematic range (i.e. at the same range) from
small to medium to large damage percentages. This type of damage occurs when the beams damage progres-
sively under the external environmental load, such as erosion, lightning, thermal creep, or wind gust. This type
of load is applied externally to all surfaces of the structure, giving rise to the systematic rusting, corrosion, or
stiffness reduction.

4.1. Computational model of the fixed–fixed beam

To investigate the applicability on different orders of the developed algorithm, various damaged cases are
introduced to a fixed–fixed beam model. Although it is a simple beam model, it is already applied to the
damage detection of power transmission facilities, such as lightning poles, in the electrical substation.13 The
beam of length Lt = 0.7 m, width W = 0.0254 m, and thickness H = 0.0031 m has area moment of inertia
I = 1

12 WH3 = 6.3058 × 10−11 m4 and mass density ρ = 2715 kg/m3. Its finite element model, shown in
Figure 1, is used to model its transverse vibration. The beam is divided into Ne elements with the length of
each element being le = Lt

/
Ne, and there are Ne + 1 nodes. With Vd and θd denoting the y-translational and
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rotational displacements at the dth node (d = 1, 2, . . . , Ne + 1), the displacement vector of the dth element
is qe

d = [Vd, θd, Vd+1, θd+1]T. Using the tensile force Fx, bending force Fy, and torsional moment Mz, the

force vector is F
e
d = [

Fx
d, Fy

d, Mz
d, Fx

d+1Fy
d+1, Mz

d+1

]T
. Without loss of generality, y-translational displacement

is represented by a cubic Hermite curve with respect to x:14

Vx = α1 + α2x + α3x2 + α4x3 (38)

and rotational displacement θxis the derivative of Vx, given by

θx = α2x + 2α3x + 3α4x2. (39)

Equations (38) and (39) can be represented in matrix form:
{

Vx

θx

}
=

[
1 x x2 x3

0 1 2x 3x2

] {
α1 α2 α3 α4

}T =
[

SV

Sθ

]
αe = Sαe. (40)

This is the displacement equation of any point within the element. From this relation, one can obtain the start-
and end-point equations at x = 0, le, respectively:

⎧
⎪⎪⎨

⎪⎪⎩

Vd

θd

Vd+1

θd+1

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
1 le l2

e l3
e

0 1 2le 3l2
e

⎤

⎥⎥⎦
{

α1 α2 α3 α4
}T = A {α} , (41)

where A is the displacement matrix of the end points. Using its inverse, the shape function vector is obtained as

Ne = SV A−1 = 1

l3
e

{
l3
e − 3x2le + 2x3 xl3

e − 2x2l2
e + x3le 3x2le − 2x3 −x2l2

e + x3le
}

. (42)

By the virtue work principle,14 the element mass matrix is obtained by substituting Ne as

Me
d =

∫ le

0
ρWHN

T
e Nedx = ρWHle

420

⎡

⎢⎢⎣

156 22le 54 −13le
22le 4l2

e 13le −3l2
e

54 13le 156 −22le
−13le −3l2

e −22le 4l2
e

⎤

⎥⎥⎦ . (43)

In addition, the strain at arbitrary point (x, y) is given by

εe
d = −y

∂2Se
V

∂x2
qe

d

=
[

6y

l2
e

− 12yx

l3
e

4y

le
− 6yx

l2
e

−6y

l2
e

+ 12yx

l3
e

2y

le
− 6yx

l2
e

]
qe

d = Be
dqe

d, (44)

where Be
d is the element strain matrix, which depends only on the geometry of the element. According to the

virtue work principle, the force vector is

F
e
d =

∫ W
2

− W
2

∫ H
2

− H
2

∫ le

0
BeT

d EdBe
d dxdydz · qe

d = Ke
dqe

d, (45)

where Ke
d is the element stiffness matrix. From this equation, Ke

d is determined as

Ke
d = EdI

l3
e

⎡

⎢⎢⎣

12 6le −12 6le
6le 4l2

e −6le 2l2
e

−12 −6le 12 −6le
6le 2l2

e −6le 4l2
e

⎤

⎥⎥⎦ . (46)
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Figure 2. Case 5o1_rs: first-order estimation d-norm of the five elements beam with systematic small-percentage random damage.

Utilizing this matrix, one can extract out the constant term Gd = EdI
/

l3
e , which is the elastic modulus of

the beam element. Its value in a healthy beam element is Gh = 8.118 × 102 N/m. Moreover, this validated
the assumption that the stiffness matrix is the first order of Gd as discussed in Equation (3). Small, medium,
and large-percentage damages, which correspond to the reduction in elastic moduli of 0–30%, 30–60%, and
60–90%, respectively, are simulated on the beam. Using the standard assembly process yields the system mass

matrix of Equation (1), i.e. M =
Ne∑

d=1
Me

d . For the initial element at d = 1, the 4 × 4 element mass matrix of

Equation (43) is assembled to the system mass matrix at degrees of freedom 1 to 4. At the intermediate element
(d = i), the element mass matrix is assembled to the system mass matrix at degrees of freedom 2i − 1 to 2i + 2.
For the final element at d = Ne, the element mass matrix is assembled to the degrees of freedom 2Ne − 1

and 2Ne + 2. Similarly, the system stiffness matrix is assembled as K =
Ne∑

d=1
Ke

d using Equation (46), where its

dimensions are 2(Ne + 1) × 2(Ne + 1). Now we should set the boundary conditions for this fixed–fixed beam.
By constraining the translational and rotational displacements, degrees of freedom 1 and 2 are eliminated at
the first node, while degrees of freedom 2Ne + 1 and 2Ne + 2 are eliminated at the (Ne + 1)th node. Thus, the
M and K matrices are generated with dimensions 2 (Ne − 1) × 2 (Ne − 1), where 2 (Ne − 1) is the degree of
freedom of the system. The displacement vector of the system containing the unconstrained nodes becomes

the eigenvector φ
k = [V2, θ2, V3, θ3, . . . , VNe , θNe]T , which is obtained by solving the eigenvalue problems in

Equation (1) or (2). In order to evaluate the performances of different order algorithms, various levels of random
damages are introduced to the modular beam with five elements from cases 5o1_rs to 5o2_rl to establish its
systematic random damage cases. For small-percentage damaged cases, the damaged ranges are 0–30% for
small percentages, 30–60% for medium percentages, and 60–90% for large percentages. Nevertheless, it is
uniform random distributed. Hence,

Gd = Gh (Dr + 0.3 · �) d = 1, 2, . . . , m, (47)

where Dr is the damage range index, � is the [0, 1] uniform random number, and other terms are defined as
before.

4.2. Small-percentage systematic damage

At first, using the first-order algorithm for the small-percentage damages, Dr = 0.7 with W
φ

i
d

= 1, W
λ

j
d

= 0.2,

and dn = 1. The d-norm drops rapidly from 7.64 × 10−1 to 1.06 × 10−1 in ten estimations (Figure 2), then
it reaches the cliff around estimation 18 in the first region. It remains at a flat plateau until estimation 35
and drops to a 1% d-norm level at estimation 36 in the second region. Finally, it remains at the flat region
until t-norm indicator 10−4% t-norm, tn = 10−4, is reached at estimation 112. From the estimation chart of

 at UNIVERSITY OF ALBERTA LIBRARY on October 12, 2012mms.sagepub.comDownloaded from 

http://mms.sagepub.com/


242 Mathematics and Mechanics of Solids 16(2)

0.0E+00

3.0E+02

6.0E+02

9.0E+02

1.2E+03

1.5E+03

1.8E+03

1 11 21 31 41 51 61 71 81 91 101 111

Estimation Number

E
la

st
ic

 M
o

d
u

lu
s 

o
f 

B
ea

m
 E

le
m

en
t 

(N
/m

^2
)

B1 B2 B3 B4 B5

Figure 3. Case 5o1_rs: first-order damage detection curves of the five elements beam with systematic small-percentage random
damage (0.7–1.0 EhI/l3e ).
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Figure 4. Case 5o2_rs: second-order damage detection curves of the five elements beam with systematic small-percentage random
damage (0.7–1.0 EhI/l3e ).

Figure 3, one can observe that elements B1, B2, B4, and B5 drop regularly in the first region, then they drop
stepwise, together with element B3, until estimation 36 in the second region. Afterwards, they drop one after
the other until estimation 112.

For the second-order algorithm, the d-norm drops rapidly from 2.97 × 10−1 to 4.44 × 10−3 around the cliff
at estimation 21 in the first region. Then it remains at the flat region until 1% d-norm level at estimation 27.
Finally, it remains at the flat region until t-norm indicator 10−4% t-norm, tn = 10−4, is reached at estimation
131. From the estimation chart in Figure 4, one can observe that elements B1, B2, B4, and B5 drop regularly
in the first region, then they drop stepwise with element B3 until estimation 20 in the second region. In these
plateau regions, they drop stepwise one after the other until estimation 131. In the GOP method2 including the
kth term, the convergence patterns are more gradual and decrease consistently. Meanwhile, the plateau region
is shortened to estimation 101.
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Figure 5. Case 5o1_rm: first-order damage detection curves of the five elements beam with systematic medium-percentage random
damage (0.4–0.7 EhI/l3e ).
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Figure 6. Case 5o2_rm: second-order damage detection curves of the five elements beam with systematic medium-percentage
random damage (0.4–0.7 EhI/l3e )

4.3. Medium-percentage systematic damage

Secondly, using the first-order algorithm in detecting medium-percentage damages, Dr = 0.4, the d-norm
drops rapidly from 2.55 to 1.04 at the cliff around estimation 38 in the first region. Then it remains at the flat
region until estimation 98, where the t-norm indicator is reached. From the estimation chart in Figure 5, one
can observe that all elements drop regularly in the first region, then they drop stepwise together in the second
region. In this plateau region, they drop one after the other until estimation 98.

For the second-order algorithm, the d-norm drops rapidly from 0.972 to 7.94 × 10−4 at the cliff around
estimation 47 in the first region, and it remains at the flat region until estimation 128, where the t-norm indicator
is reached. From the estimation chart in Figure 6, one can observe that elements B2 and B3 remain at the upper
bound up to the fifth estimations, then they drop regularly with elements B1, B2, and B5 in the first region.
Afterwards, they remain at the plateau region basically and drop to the ultimate levels at estimation 128. Similar
pattern can be observed in the GOP method including the kth term, but the plateau region is shortened to
estimation 69.
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Figure 7. Case 5o1_rl: first-order damage detection curves of the five elements beam with systematic large-percentage random
damage (0.1–0.4 EhI/l3e )

4.4. Large-percentage systematic damage

Thirdly, the first-order algorithm is applied to the large-percentage random damages (Dr = 0.1) with the
estimation chart as in Figure 7. The d-norm drops rapidly from 228 to 8.85 at the first estimation. Then it
rises and drops in the first hill region until estimation nine where the 1% d-norm level is attained. Afterwards,
it remains at the second plateau region until estimation 84, where the t-norm indicator is reached. From the
estimation chart, all elements interact vigorously in the hill region, then they drop gradually and stepwise one
after the other until estimation 84.

For the second-order algorithm, the d-norm drops rapidly from 24.2 to 1.59 in four estimations at the
first region, then it drops regularly to 1% d-norm level at estimation nine. Afterwards, it remains at the third
plateau region until the t-norm indicator is attained at estimation 48. From the estimation chart in Figure 8,
all elements interact vigorously initially in the first region, then they drop gradually in the second region.
Afterwards, they drop stepwise one by one until estimation 48, where the t-norm indicator is attained. For
the GOP method including the kth term, nearly same convergence patterns are observed. However, the t-norm
indicator is attained later at estimation 52.

Firstly in the order comparison, for large-percentage damages, the convergence of the second-order algo-
rithm is more effective for the t-norm indicator. Moreover, in medium-percentage damaged cases, the con-
vergences of the first-order algorithm are much faster for both indicators. Furthermore, for small-percentage
damages, the convergences of the second-order algorithm are slightly more effective for both indicators.

Secondly in the method comparison, in small-percentage damages, the convergence of the GOP method is
more effective for the t-norm indicator. Meanwhile, the GOP method is much faster for the t-norm convergence
in medium-percentage damages. However, for large-percentage damages, convergence of this method is slightly
more effective for the t-norm indicator.

4.5. Damage detection of the seven and nine elements beam

As illustrated in Table 1, for the seven elements medium-percentage damages, the second-order algorithm
(estimation 53) converges significantly faster to the 1% d-norm than the first-order algorithm (estimation 89).
Meanwhile in the t-norm indicator, the first-order algorithm (estimation 393) converges slower than the second-
order algorithm (estimation 289). It is interesting to note that the starting healthy value of the beam varies
according to the element number. This is explained by the element length being the total length divided by
the element number, i.e. le = Lt

/
Ne. From Figure 9, all elements drop regularly to estimation 25 where the

 at UNIVERSITY OF ALBERTA LIBRARY on October 12, 2012mms.sagepub.comDownloaded from 

http://mms.sagepub.com/


Wong et al. 245

0.0E+00

3.0E+02

6.0E+02

9.0E+02

1.2E+03

1.5E+03

1.8E+03

1 11 21 31 41 Bd

Estimation Number

E
la

st
ic

 M
o

d
u

lu
s 

o
f 

B
ea

m
 E

le
m

en
t 

(N
/m

)

B1 B2 B3 B4 B5

Figure 8. Case 5o2_rl: second-order damage detection curves of the five elements beam with systematic large-percentage random
damage (0.1–0.4 EhI/l3e ).

Table 1. Convergence analysis of seven and nine elements beam damage detection.

Perturbed method GOP

Case d-norm t-norm d-norm t-norm

7o1_rm 89 393 89 393
7o2_rm 53 289 31 249
9o1_rs 277 301 277 301
9o1_rs 33 109 48 127

cliff region occurs, then they drop stepwise to estimation 68 where the second cliff region is experienced.
Afterwards, they propagate in the plateau region where the desired solutions are achieved. As the number of
beam elements increases, the order arrangement of their magnitudes requires more estimations in the initial
regions. From Figure 6, one can observe that the order arrangement becomes stable in five estimations for
the five elements beam, while it takes 25 estimations for the seven elements beam in Figure 9. Moreover,
the complexity of the eigenvectors increases, with the element and node numbers leading to more rigorous
mode-shifting effects. Thus, more stepwise drops are involved in the arrangement process. In the first-order
algorithms for both methods, perturbation coefficients are not constructed from the basic vectors of all used
eigenvectors, hence there is no difference for the convergence patterns, as revealed in Table 1.

Now for nine elements small-percentage damages, stepwise drops of the second-order algorithm occur at
smaller numbers of estimations than those of the first-order algorithm. Moreover, the 1% d-norm is attained at
a smaller estimation number (33), while the t-norm indicator is reached at the smaller number for the second-
order algorithm (estimation 61) than the first-order algorithm (estimation 277). One can observe from the
estimation chart (Figure 10) of the second-order algorithm that all beam elements drop regularly toward the cliff
region at estimation 13. Afterwards, they propagate in the plateau region irregularly until the t-norm indicator

is attained at estimation 112. Considering the Hessian matrix, a small change in δG
(w)
(b−1) leads to a large change

in gb−1. This explains the extra-low convergent rate, particularly when the change in gb−1 is small. On the
other hand, as the divider includes the inverse Hessian matrix of the previous iteration, this causes numerical
instability during the estimation process or a singularity that results in Bb−1. Thus, this leads to the extra-low
value in the αb search. Combining these two factors, the convergent rate is lower, leading to flattening behavior
in the latter regions of the refinement process.
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Figure 9. Case 7o2_rm: second-order damage detection curves of the seven elements beam with systematic medium-percentage
random damage (0.4–0.7 EhI/l3e ).
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Figure 10. Case 9o2_rs: second-order damage detection curves of the nine elements beam with systematic small-percentage random
damage (0.7–1.0 EhI/l3e ).

5. Conclusion

Using the perturbed eigenvalue problem only, the structural damage detection algorithm was formulated. At first
by introducing the perturbed eigenvector and eigenvalue, their non-kth perturbation coefficients were derived
explicitly. By comparing these perturbation coefficients with those generated from the GOP method, their cor-
rectness is proven. The form of eigenvector coefficient from this method is more lengthy, but its structure
is more systematic through the normalization procedure. Moreover, higher-order terms are generated from
lower-order explicit terms, which is more direct and convenient.

Secondly, these equations were solved by the DFP quasi-Newton method. Automated damage detection
algorithm for the odd elements beam was programmed. In small- and large-percentage damages, the con-
vergence of the second-order algorithm is more effective for the t-norm indicator. Meanwhile, in medium-
percentage damaged cases, the convergences of the first-order algorithm are faster for both indicators. By
comparing both methods, in small-percentage damages, the convergence of the GOP method is more effective
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for the t-norm indicator. Meanwhile, the GOP method is much faster for the t-norm convergence in medium-
percentage damages. However, for large-percentage damages, t-norm convergence of this method is slightly
more effective.

Thirdly, for seven and nine elements beam cases, the second-order algorithm converges faster both in 1% d-
norm and 10−4% t-norm. These cases reveal that the efficiency of the damage detection process increases with
the order of the algorithm. Further investigation needs to be carried out to establish the relationships between
higher-order algorithms and their convergences.
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